
 Journal of Pioneering Artificial Intelligence Research

Performance Comparison of Web Assembly and JavaScript

Jakub Ciszewski1* and Kaja Myk2

Abstract

JavaScript remains the dominant language for client-side scripting, while Web Assembly offers near-native
execution speeds, making it a compelling choice for computationally intensive tasks. This study provides a
comprehensive analysis of the performance differences between Web Assembly and JavaScript across various
computing environments, including different browsers (Firefox, Chrome, Edge) and platforms (desktop and
mobile).

To evaluate computational efficiency, we conducted a series of benchmark tests, including integer operations
(Sieve of Er- Antisthenes, sorting algorithms), floating-point calculations (numerical integration, Monte Car-
lo method) and recursive computations (Fibonacci sequence, matrix multiplication). Additionally, we investi-
gated the impact of Web Assembly on ma- chine learning workloads by utilizing minimalist implementations
such as Tiny DNN for digit classification on the MNIST dataset. Our findings indicate that Web Assembly
consistently outperforms JavaScript in CPU-bound tasks, particularly in integer operations and recursive
computations. However, JavaScript’s just-in-time (JIT) compilation allows it to remain competitive in some
floating-point calculations.

One focus of our study was the application of Web Assembly in browser-based machine learning. We exam-
ined the performance of lightweight neural network implementations, emphasizing Web Assembly’s ability to
accelerate tensor computations directly in the browser. This capability is crucial for deploying AI models on
the client side, reducing reliance on cloud-based services, improving privacy, and minimizing latency. Our
analysis also explores Web Assembly’s potential for real-time applications such as image classification, object
detection, and natural language processing.

Beyond raw performance metrics, this study assesses the broader implications of Web Assembly’s adoption
in web development. One of its key advantages is its ability to support multiple programming languages, in-
cluding Rust, C, and C++, allowing developers to leverage high-performance libraries within the browser
environment. Additionally, Web Assembly’s sandboxing mechanisms enhance security by isolating execution,
reducing potential attack vectors compared to traditional JavaScript-based applications.

Despite its advantages, Web Assembly has limitations. Execution performance varies across browsers, and

Citation: Jakub Ciszewski (2025) Performance Comparison of Web Assembly and JavaScript
 J of Pion Artf Research 1(2),1-7. WMJ/JPAIR-111

J.of Pion Artf Int Researc17 Vol:1,2 Pg:1

Review Article Open Access

Electrical Engineering WUT Applied Computer Science Warsaw, Poland

 DOI: doi.org/10.63721/25JPAIR0111
ISSN: 3069-0846

J.of Pion Artf Int Research Vol:1,2 Pg:2

Review Article Open Access

Introduction
Web Assembly (WASM) is a binary format that en-
ables high-performance execution in web browsers,
offering near- native speed for computationally in-
tensive tasks. Unlike JavaScript, which is interpret-
ed, Web Assembly is compiled from languages like
C, C++, and Rust, providing faster execution for
complex applications. While JavaScript remains the
dominant client-side scripting language, Web As-
sembly has emerged as a strong alternative for per-
formance-critical tasks, particularly in areas such as
numerical simulations and machine learning [1-7].

The topic of performance comparison between Ja-
vaScript and Web Assembly has gained significant
academic interest, with numerous studies exploring
how these two technologies handle computational-
ly intensive tasks in web applications. As JavaScript
remains the dominant language for client-side script-
ing, researchers have sought to understand the per-
formance benefits of Web Assembly, particularly for
tasks that require near-native execution speeds [8].

A recent study investigates the potential for enhanc-
ing JavaScript performance in Internet of Things
(IoT) environments through the use of Web Assem-
bly. The authors con- ducted a series of experiments
on a Raspberry Pi platform, comparing execution
time, memory consumption, and energy usage across
implementations in JavaScript, Web Assembly, and
C. The results demonstrate that Web Assembly can
significantly improve execution speed and reduce

energy consumption in IoT applications, although this
may come at the cost of a slight increase in memory
usage in certain scenarios [10]. These findings sug-
gest that Web Assembly offers a promising avenue for
optimizing JavaScript-based workloads in resource-
constrained IoT devices.

In a comprehensive evaluation of execution efficien-
cy and energy consumption, the study investigates the
comparative performance of Web Assembly (Was)
and JavaScript (JS) within modern web browser envi-
ronments. Employing a combination of microbench-
marks and real-world applications—including a game
console emulator and a PDF viewer—the authors
systematically analysed performance across major
browsers such as Google Chrome, Microsoft Edge,
and Mozilla Firefox. The findings reveal that Was de-
livers superior performance and reduced energy us-
age in practical application scenarios, although results
from micro bench- marks exhibit greater variability
[9]. This research underscores the viability of Wasim
as a high-efficiency alternative to JS in web-based ap-
plications and establishes a methodological founda-
tion for further empirical studies in this domain.

Weifang Wang investigates the performance of web
applications enhanced with web Assembly in com-
parison to their JavaScript counterparts, focusing on
execution time and memory usage across a variety of
programs. The study reveals that while Chrome’s Just-
In-Time (JIT) optimization significantly accelerates
JavaScript execution, it has little to no impact on Web

*Corresponding author: Jakub Ciszewski, Electrical Engineering WUT Applied Computer Science War-
saw, Poland.

Submitted: 26.07.2025 Accepted: 29.07.2025 Published: 10.09.2025

Keywords: Web Assembly, JavaScript, Performance Comparison, Machine Learning, Convolutional Neural
Networks

its integration with JavaScript-based applications presents challenges due to data serialization overhead.
Moreover, Web Assembly lacks direct access to the DOM, necessitating JavaScript as an intermediary for UI
interactions.

As Web Assembly continues to evolve, its role in performance- critical web applications is expected to expand,
particularly in fields such as cryptography, data processing, and real-time machine learning.

J.of Pion Artf Int Research Vol:1,2 Pg:3

Review Article Open Access

Assembly performance. Furthermore, the authors report that Web Assembly consumes substantially more
memory than JavaScript, primarily due to differences in memory management models [11]. The authors ex-
press hope that these findings will contribute to the ongoing refinement of Web Assembly runtimes. Overall,
this work advances the understanding of the practical performance benefits and trade-offs of Web Assembly
relative to traditional JavaScript in the context of modern web applications.

This study aims to compare the performance of Web Assembly and JavaScript in executing various algo-
rithms across different browsers (Firefox, Chrome, Edge, and Safari) and platforms (Linux and Windows).
We evaluate execution times for integer, floating-point, and recursive computations, providing insights into
the strengths and weaknesses of each approach for web-based applications. Furthermore, the study explores
the practical application of Web Assembly in machine learning tasks, particularly focusing on its performance
with the MNIST dataset.

Comparison between Web-Assembly and JavaScript for Mathematical Operations
Performance Testing
We conducted a series of performance tests on both Windows and Linux, evaluating the execution times of
various numerical computations across different web browsers, including Safari, Chrome, Firefox, and Edge.
The primary objective of these tests was to compare the efficiency of JavaScript and Web-Assembly imple-
mentations in handling computationally intensive tasks, measuring execution times in seconds. This approach
allowed us to analyse the impact of both interpreted (JavaScript) and compiled (C-to-WASM) implementa-
tions on the execution speed of the algorithms.

The selected algorithms include:
•	 The Sieve of Eratosthenes, used for generating prime numbers,
•	 The Monte Carlo method, applied for estimating the value of Pi through random sampling,
•	 The Fibonacci sequence, calculated using recursive and iterative approaches,
•	 Numerical integration, a method for approximating the integral of a function.

It is important to note that Safari was not tested on Linux because the browser is not officially available on this
operating system. This limitation prevented direct comparisons for Safari across both platforms.

To ensure the accuracy and fairness of our comparisons, all tests were performed using the same number of
iterations for each algorithm. This approach guarantees that differences in execution time reflect the efficiency
of the browsers and the underlying system optimizations rather than variations in workload.

The results of these tests are presented in the tables below, providing a clear overview of how different brows-
ers and operating systems handle numerical computations.

Table 1: JavaScript Test Results on Linux in Seconds
Algorithm Firefox Chrome Safari Edge
The Monte Carlo method 6.289 11.409 X 13.222
The Sieve of Eratosthenes 13.011 13.333 X 15.101
The Fibonacci sequence 3.133 6.212 X 6.200
Numerical integration 5.092 8.743 X 9.111

J.of Pion Artf Int Research Vol:1,2 Pg:4

Review Article Open Access

Table 2: Web assembly Test Results on Linux in Seconds
Algorithm Firefox Chrome Safari Edge
The Monte Carlo method 6.209 10.902 X 11.238
The Sieve of Eratosthenes 6.001 12.021 X 12.029
The Fibonacci sequence 2.103 5.421 X 6.101
Numerical integration 2.121 4.781 X 5.140

Table 3: Web assembly Test Results on Windows in Seconds
Algorithm Firefox Chrome Safari Edge
The Monte Carlo method 8.202 6.401 12.202 6.303
The Sieve of Eratosthenes 15.101 14.109 13.208 15.093
The Fibonacci sequence 6.101 4.201 6.101 4.082
Numerical integration 8.009 6.987 8.302 7.503

Table 4: Webassembly Test Results on Windows in Seconds
Algorithm Firefox Chrome Safari Edge
The Monte Carlo method 7.989 13.555 12.161 6.331
The Sieve of Eratosthenes 13.101 14.004 12.984 13.101
The Fibonacci sequence 5.991 3.099 6.055 4.001
Numerical integration 7.778 6.559 8.333 7.123

Result Comparison
Test Results on Linux: On Linux, the best results were achieved with Firefox, followed by Chrome and Edge.
Web-Assembly (WASM) was faster than JavaScript across the board.

Firefox generally performed better due to its highly optimized JavaScript engine and the efficient handling
of Web-Assembly. It has long been known for its focus on performance improvements, particularly for web
standards like Web-Assembly, and is often faster in executing complex computations. Chrome also showed
good performance, benefiting from the V8 engine’s strong optimization capabilities. However, Edge, while
competitive, tended to lag behind, possibly due to less aggressive optimizations for Web-Assembly or differ-
ences in its JavaScript engine performance. Additionally, the varying levels of browser support for Web-As-
sembly optimizations and how each browser manages resources may have contributed to the observed differ-
ences in performance.

Test Results on Windows
On windows, we also achieved better results with Web-Assembly. The fastest browsers were Edge, Chrome,
Safari, and Firefox, in that order.

Edge performed the best, likely due to its strong integration with the Windows operating system and optimi-
zations made for performance, especially in handling Web Assembly. Chrome followed closely behind, bene-
fiting from the V8 engine’s advanced optimizations for both JavaScript and Web Assembly.

Safari, while generally optimized for performance on Apple devices, showed solid results but was slower
compared to Edge and Chrome, possibly due to the optimizations being more focused on macOS. Firefox, al-
though performing well, lagged slightly behind in this case, which could be attributed to differences in how its
Web Assembly runtime and JavaScript engine were optimized for Windows. These variations can result from
the different priorities and optimizations made by each browser’s development team for specific platforms.

J.of Pion Artf Int Research Vol:1,2 Pg.5

Review Article Open Access

Comparison of JavaScript and Web assembly Performance in Machine Learning Tasks
Methodology
The aim of this chapter is to evaluate the practical application of Web Assembly (WASM) in comparison to
JavaScript (JS) for machine learning (ML) tasks within web browsers. The study focuses on assessing how
WASM performs in real- world image processing tasks, such as classifying the MNIST dataset. The Convents
library was used to repeatedly load and process 8,000 images 100 times, simulating a typical ML workflow.

Data was collected using developer tools available in mod- ern web browsers, allowing for precise measure-
ments of execution time and memory consumption across different platforms and browsers. The final results
were calculated as the average value from the conducted tests, providing reliable insights into the performance
of WASM compared to JS.

The primary goal of this study was to investigate the potential of Web Assembly as a solution for computation-
ally intensive tasks in browser-based ML applications. Particular attention was given to how WASM can offer
superior performance and reduced memory usage, especially in mobile environments and other resource-con-
strained platforms.

Execution Time Comparison
The test results clearly demonstrate the significant advantage of Web Assembly over JavaScript in terms of
execution time. The speed-up achieved with Web Assembly varied depending on the platform and browser,
but in every case, WASM significantly outperformed JavaScript. The highest speed-up was observed on mo-
bile devices, particularly on the iPhone using Safari, where the performance improvement reached 30.03x. In
contrast, the smallest speed-up was recorded on Windows, specifically using the Edge browser, with a gain of
17.81x.

Table 5: Execution Time and Speed-Up Comparison For JavaScript And Web assembly Across Differ-
ent Platforms and Browsers.

Platform Browser JS (s) WASM (s) Speed-up
Android Chrome 120.887 4.531 26.68
Android Samsung 128.619 4.819 26.69
iPhone Safari 69.700 2.321 30.03
iPhone Chrome 69.004 2.332 29.59
Windows Chrome 75.348 4.140 18.20
Windows Edge 76.049 4.270 17.81
Windows Firefox 124.741 4.603 27.10
Windows Opera 76.061 4.170 18.24
MacBook Safari 77.258 4.259 18.14

Memory Consumption Analysis
In addition to execution time, the average memory consumption during image processing was measured. Ja-
vaScript consumed an average of 33.2 MB, while Web Assembly used only 19.6 MB. These results suggest
that Web-Assembly not only accelerates data processing but also provides more efficient memory manage-
ment. This efficiency is particularly significant for mobile devices with limited resources, where conserving
memory can significantly enhance both performance and user experience.

J.of Pion Artf Int Research Vol:1,2 Pg:6

Review Article Open Access

Table 6: Memory Usage Comparison Between JavaScript and Web assembly During Image Processing.
Metric JS(MB) WASM(MB)
Memory usage 33.2 19.6

developers need to maintain an integration layer be-
tween WASM and JS.

Conclusions
The performance comparison conducted across both
Linux and Windows platforms reveals significant dif-
ferences between JavaScript and Web-Assembly in
handling computationally intensive tasks. JavaScript,
being an interpreted language, introduces overhead
that affects its execution speed, especially for al-
gorithms such as the Monte Carlo method, Sieve of
Eratosthenes, Fibonacci sequence, and Numerical in-
tegration. On the other hand, Web Assembly offers a
more efficient execution environment due to its closer
alignment with machine code, leading to faster perfor-
mance for complex computations. Additionally, when
C code is compiled to Web-Assembly, the results show
even greater improvements in performance.

While browser performance varies, with Firefox
generally performing better than Chrome and Edge,
the overall findings demonstrate that Web-Assembly
(particularly when compiled from C) provides a more
efficient solution for computationally demanding
tasks across both Windows and Linux platforms. This
comparison highlights the performance trade-offs and
ad- vantages of each approach for executing intensive
algorithms. In the context of machine learning (ML),
particularly for tasks like the MNIST dataset classifi-
cation, Web-Assembly offers significant practical ben-
efits. Training models and per- forming inference on
such tasks in the browser can be computationally ex-
pensive, especially when handling large datasets like
MNIST. With the integration of Web-Assembly, ML
operations benefit from faster execution times com-
pared to JavaScript, making it a compelling choice
for client-side ML applications. For example, in the
case of image classification tasks, Web-Assembly al-
lows for faster data processing, reduced latency, and
improved overall user experience, especially on de-
vices with limited computational power. This makes
Web-Assembly a strong candidate for real-time ML
applications running in browsers, where performance
and efficiency are critical.

Comparison with Native Execution
To provide further context, the execution time of the
same ML task was measured on a native implemen-
tation running on a laptop equipped with an Intel
Core i7 processor. The native execution time was
1.5 seconds, significantly outperforming both JS and
WASM. However, while WASM remains slower than
native execution, its performance is much closer to
native than JavaScript, making it a viable alternative
for high- performance web-based ML applications.

Results
The conducted study clearly indicates the superi-
ority of Web Assembly over JavaScript in terms of
performance and memory efficiency for ML appli-
cations in browsers. WASM enables several times
faster execution of ML operations, which is crucial
for applications requiring intensive computations.
This advantage is particularly evident on mobile de-
vices, where memory efficiency and execution speed
are key factors for a positive user experience. The
data was collected using built-in developer tools in
browsers, ensuring precise measurements. Although
native execution remains the fastest option, Web
Assembly offers a compelling balance between per-
formance and accessibility, making it the preferred
technology for client-side ML applications.

Limitations of Web assembly in Dom Manipulation
Although Web Assembly provides significant per-
formance improvements and allows code written
in various languages to run on the web, it currently
does not support direct manipulation of the Docu-
ment Object Model (DOM). DOM APIs are only ac-
cessible through JavaScript, meaning that any Web
Assembly-based application must rely on a” bridge”
to JavaScript in order to interact with the page struc-
ture.

In practice, this means that if a Web Assembly
module needs to modify the layout, add HTML el-
ements, or respond to user events, it must call Ja-
vaScript functions that perform the necessary DOM
operations. This adds overhead and complexity, as

J.of Pion Artf Int Research Vol:1,2 Pg:7

Review Article Open Access

However, despite these performance advantages,
Web-Assembly currently lacks the ability to direct-
ly manipulate the Document Object Model (DOM),
which remains accessible only through JavaScript.
As a result, applications that require interaction with
the browser’s interface must still rely on JavaScript
as a bridge. This introduces additional complexity
and may offset some performance gains in scenarios
involving frequent or dynamic UI updates. There-
fore, while Web-Assembly is a powerful tool for
computational logic, it is best used in conjunction
with JavaScript for full-featured web applications.

References
1.	 D Herrera, H Chen, E Lavoie and L Hendren

(2018) Web-Assembly and JavaScript Chal-
lenge: Numerical Program Performance Using
Mod- ern Browser Technologies and Devices
https://www.sable.mcgill.ca/publications/techre-
ports/2018-2/techrep.pdf.

2.	 J De Macedo, R Abreu, R Pereira and J Saraiva
(2021) On the Runtime and Energy Performance
of Web-Assembly: Is Web-Assembly Superior to
JavaScript Yet? http://ieeexplore.ieee.org/docu-
ment/9680302.

3.	 M Reiser, L Blaser (2017) Accelerate JavaScript
Applications by Cross- Compiling to Web-As-
sembly, Proceedings of the ACM 10-17.

4.	 Y Yan, T Tu, L Zhao, Y Zhou and W Wang (2021)
Understanding the Performance of Web-Assem-
bly Applications, Proceedings of the ACM 533-
549.

5.	 B R Mohan, Tushar (2022) Comparative Analysis
of JavaScript and Web-Assembly in the Browser
Environment https://ieeexplore.ieee.org/docu-
ment/9929829/authors#authors.

6.	 J W Sunarto, A Quincy, F S Maheswari, Q D A
Hafizh, M G Tjandrasubrata, et al. (2023) A Sys-
tematic Review of Web-Assembly vs. JavaScript
Performance Comparison https://ieeexplore.ieee.
org/document/10277917.

7.	 A Haas, A Rossberg, D Schuff, B Titzer, M Hol-
man, et al. (2017) Bringing the Web Up to Speed
with Web-Assembly,Proceedings of the 38th
ACM SIGPLAN Conference on Programming
Language Design and Implementation 185-200.

8.	 A Jangda, B Powers, E D Berger and A Guha
(2019) Not So Fast: Analysing the Performance of
Web-Assembly vs. Native Code, Proceedings of
the 2019 USENIX Annual Technical Conference
(USENIX ATC 19) 107-120.

9.	 R Lehmann, A Reinefeld (2020) Performance
Comparison of Web-Assembly and JavaScript
for Numerical Computations in the Browser, Pro-
ceedings of the 9th International Conference on
Performance Evaluation and Benchmarking for
Big Data 1-6.

10.	F L Oliveira, J C B Mattos (2020) Analysis of Web
Assembly as a Strategy to Improve JavaScript Per-
formance on IoT Environments https://sol.sbc.org.
br/index.php/sbesc_estendido/article/view/13102.

11.	W Wang (2021) Empowering Web Applications
with Web Assembly: Are We There Yet? https://
ieeexplore.ieee.org/document/9678831.

Copyright: ©2025 Jakub Ciszewski. This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

