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Abstract

Existing methodologies for predictive maintenance in aviation engines have largely diverged into data-centric 
and physics-centric models, each constrained by their unchangeable limitations. In this study, a hybrid frame-
work integrating both perspectives was developed to address fatigue-induced failures in the CFM56-7B en-
gine. Specifically, a Bayesian Physics-Informed Neural Network (B-PINN) was constructed, embedding Paris’ 
Law within a deep learning structure and modeling key fatigue parameters as probabilistic distributions. 
Selected sensor data from NASA’s CMAPSS FD004 dataset was employed to assume latent stress signals and 
simulate fatigue crack propagation. The results show that the proposed model has advantages on interpret-
ability and reliability of fatigue predictions but also quantifies uncertainty through variational inference and 
Monte Carlo dropout.

*Corresponding author: Yebeen Hwang, Hankuk Academy of Foreign Studies, Seoul, South Korea.

Submitted: 27.07.2025     Accepted: 31.07.2025              Published: 11.08.2025

Citation: Yebeen Hwang (2025) Hybrid Paris Physics-Informed Neural Network for Predicting CFM56-7B Engine 
Fatigue Failure. J of Pion Artf Research 1(2), 1-11. WMJ/JPAIR-109

J.of Pion Artf Int Researc17 Vol:1,2  Pg:1

Research Article Open Access

Hankuk Academy of Foreign Studies, Seoul, South Korea

                DOI: doi.org/10.63721/25JPAIR0109

Keywords: First-System Perspective (AI), AI Black Box, Human-AI Interaction, Subtle Communication, 
Default Mode Network (DMN), AI Ethics, Qualitative AI Research

Introduction
Background
The Boeing 737 is one of the most widely used aircraft models. According to Boeing Company’s Boeing 
Commercial and Deliveries data through 12/31/2024 [1], a total of 19,579,737 models were purchased by 
commercial airlines. At the same time, Boeing 737 models have experienced many accidents. Although the 
Boeing 737-600/700/800/900 is one of the most widely used aircraft models globally, its hull loss accident 
rate (0.17%) is not exceptionally low compared to other frequently operated models.
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Figure 1: Accident Rates by Airplane Type.

The Boeing aircraft models 737-600, 700, 800, and 
900 all use CFM56-7B engines. CFM56 is a turbofan 
jet engine series made by CFM International. Among 
all of the CFM56 engine series, the CFM56-7B is 
the most advanced model and requires a low cost of 
operation.

One of the most fatal causes of airplane accidents 
is due to SCF (System/Component Failure). Many 
types of SCFs exist, including engine fatigue, ther-
mal stress, foreign object debris/damage (FOD), 
electrical failures. This research primarily focuses on 
fatalities due to engine fatigue. This study provides 
Physics-Informed Machine Learning (PIML) to pre-
vent aircraft accidents caused by engine fatigue of 
the jet engine CFM56-7B. The research investigates 
how the PIML model can detect early signs of fa-
tigue, providing information for the early replace-
ment of fatigued engines.

Problem Statement
Existing Remaining Useful Life (RUL) prediction 
methods for jet engines are usually divided into two 
types: purely data-driven models and purely phys-
ics-based models. Data-driven models are flexible, 
but they don’t really explain what’s happening inside 
the engine, and they also need a lot of failure data — 
which is pretty much impossible in aviation, where 
failures are supposed to be rare. On the other hand,

physics-based models rely too much on complicated 
formulas and material constants, and getting those 
constants right without a sufficient number of exper-
iments is not realistic. Hence, this study focuses on 
using a physics-informed machine learning (PIML) 
approach and data-driven prediction with physical 
laws like Paris’ Law to make the model both accurate 
and interpretable.

Research Objectives and Contributions
The Physics-Informed Neural Network (PINN) devel-
oped in this study is structured around the classical 
Paris’ Law formulation of fatigue crack growth, ex-
pressed as ,  where  C  and m  are  mate-
rial-dependent  parameters.. These parameters are reg-
ularized using empirical values drawn from titanium 
alloy fatigue datasets for Ti-6Al-4V, per ASTM E647 
and related studies [5,6]. Sensor features from the 
FD004 subset of the C-MAPSS dataset [3] are used as 
model inputs, with domain-guided selection identify-
ing low-pressure turbine temperature (T24), pressure 
ratio (P30), vibration, and fan/core rotational speeds 
(Nf, Nc) as principal fatigue indicators. The hybrid 
PINN loss function incorporates both data fidelity by 
RNN loss function and physics-informed terms, min-
imizing deviation from observed crack growth trajec-
tories while ensuring compliance with Paris’ Law. Fol-
lowing [2], a bias correction component is added via an 
RNN-informed residual to accommodate deviations 
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Theoretical Background
Fatigue Crack Growth and Paris’ Law Standard for-
mula of Paris’ law is defined as

                                             Eq. (1) 

where 𝑎 is crack length, 𝑁 is load cycles, ∆𝐾 is stress 
intensity factor range, and C is the crack growth co-
efficient; m is the Paris exponent. Usually in metal-
lic blade condition, constant 𝐶 and 𝑚 vary as shown 
below. [5]

                             Eq. (2)

Paris’ law is applied for measuring fatigue crack 
growth rates under constant amplitude loading. It 
shows that crack length per load cycle is proportion-
al to the stress intensity factor range. This formula-
tion works as the fundamental concept in this paper’s 
Physics-Informed Neural Network (PINN) model.

Not only Paris’ law, but there are also many equa-
tions explaining crack growth of the fatigue materi-
al, such as Miner’s rule. Miner’s rule assumes linear 
accumulation of fatigue damage, but it fails to ac-
curately represent real-world damage under variable 
amplitude loading. In contrast, Paris’ law models 
incremental crack growth per cycle, which makes 
the model better capture the nonlinear behaviors. 
According to [6], nonlinear summation methods es-
timate failure up to 23% earlier than Miner’s predic-
tion.

                                       Eq. (3)

In  this  equation,  is  a  stress  intensity  factor  range,  
and  is  the  crack  length.  is  the  effective  stress ∆ 𝐾  
𝑎  σ  applied  to  the  material,  and  and  are  material  
constants  that  are  specific  to  the  engine  material  
𝐶  𝑚  (e.g.,  Ti-6Al-4V  used  in  turbine  blades).  is  
a  geometry  factor.  According  to  [7],  the  model  
treats  𝑌  mechanical  stress  not  as  a  direct  meas-
urement  but  as  a  latent  variable  inferred  from  
sensor  inputs,  σ  especially  under  operating  condi-
tions  like  altitude,  shaft  speed,  and  total  

temperature.  This  study  derives the approach of 
[7] applying the formula of the stress intensity factor 
range.

In this equation, ∆𝐾 is a stress intensity factor range, 
and 𝑎 is the crack length. σ is the effective stress ap-
plied to the material, and 𝐶 and 𝑚 are material con-
stants that are specific to the engine material (e.g., Ti-
6Al-4V used in turbine blades). 𝑌 is a geometry factor. 
According to [7], the model treats mechanical stress σ 
not as a direct measurement but as a latent variable in-
ferred from sensor inputs, especially under operating 
conditions like altitude, shaft speed, and total temper-
ature. This study derives the approach of [7] applying 
the formula of the stress intensity factor range.

Machine Learning Model
Physics-Informed Neural Network (PINN)
PINN is deep learning models that incorporate phys-
ics-based loss terms (e.g., PDEs or ODEs) in the 
training objective. It takes predictive maintenance a 
step further by combining physics-based models with 
machine learning. Unlike traditional machine learn-
ing models that rely only on historical data, PIML in-
corporates physical principles and engineering fields 
like fatigue models, thermodynamics, and material 
stress analysis to make better predictions [8]. Using 
the PIML model, machine learning models’ interpret-
ability, robustness, and generalization with limited 
data increase outstandingly. Physics-Informed Ma-
chine Learning (PIML) For the CFM56-7B engine, 
PIML for the CFM56-7B engine can detect fatigue 
cracks. By using a combination of finite element anal-
ysis (FEA) and machine learning, a machine learning 
model can identify early fatigue cracks. Also, by using 
computational fluid dynamics (CFD) along with neu-
ral networks, it can analyze how temperature changes 
impact turbine blade durability due to thermal stress 
of metal blades.
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Figure 2: Schematic of a Physics-Informed Neural Network (PINN).

In fatigue modeling under corrosive environments, a hybrid PINN structure can be implemented with a recur-
rent neural network (RNN) learning residual dynamics (e.g., oxidation effects).

                                             
Fig.  3  Proposed  RNN  cell  for  corrosion-fatigue  crack  propagation. MLP  stands  for  multilayer percep-
tron,  represents stress range is stress ratio, and   means corrosion environment index.

The physics loss from Paris’ Law and data mismatch were balanced using dynamic weighting:
                                                       

                                                                                                              Eq. (4)

Where 𝐿total is the overall loss function used to train the model; 𝐿physics is a loss function that shows how well the 
model follows Paris’ Law; and 𝐿RNN is a loss function that represents how the model matches with the actual 
sensor data. α is a weighting coefficient that controls the weighted value between the physics-based loss func-
tion and data-driven loss function. By weighting between two loss functions, the hybrid model encourages 
adopting bias correction modules to capture unmodeled fatigue phenomena (like thermal fatigue or corrosion).

According to a study by A. Yucesan [5], the hybrid PINN predicts fatigue with higher accuracy by applying 
physics. The study by Yucesan showed a 25% RMSE reduction compared to black-box DNNs.

This study addresses this critical gap by introducing a hybrid Bayesian Physics-Informed Neural Network 
designed to estimate latent internal stress directly from sensor data and simulate fatigue crack growth via em-
bedded Paris Law dynamics. Unlike traditional methods that treat stress as a known or externally measured 
quantity, this framework models stress as a hidden variable, inferred from selected features in the C-MAPSS
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dataset filtered to resemble CFM56-7B operating 
conditions [12]. This inference is then integrated 
into a physics-based crack growth calculation us-
ing ΔK and Paris’ Law, while Bayesian uncertainty 
modeling accounts for sensor noise and parameter 
ambiguity. By jointly learning both physical and sta-
tistical relationships, the proposed method offers a 
novel approach to fatigue life prediction—uniquely 
suited for real-world aviation scenarios where stress 
cannot be directly measured yet is the primary driver 
of structural failure.

Challenges in Parameter Estimation of C, m
Constants C and m in Eq. (1) are easily affected by 
the material microstructure, heat treatment, and sur-
face design. Even within the same alloy (e.g., Ti-6AI-
4V), the value can fluctuate a lot. For an accurate es-
timation of the constant, stress intensity factors must 
be calculated using Digital Image Correlation (DIC) 
and the Extended Finite Element Method (XFEM). 
However, due to the limitations of these methodolo-
gies, direct estimation of C and m using techniques 
like DIC or XFEM has challenges in practical fa-
tigue analysis. Specifically, accurate estimation of 
the stress intensity factor ΔK which is defined by:

                                            Eq. (3)

where Y is the geometry correction factor, σ is the 
applied stress, and a is the crack length. However, 
in various influences such as turbine blades, Y may 
vary spatially and cannot be expressed analytically, 
necessitating FEM-based estimation.

Even when ΔK is known, fitting the Paris’ Law Eq. 
(1) requires accurate measurement of both da/dN 
and ΔK, which are often corrupted by noise in the 
dataset. The equation below shows when we take 
logarithms to linearize the relationship, based on the 
variables given in Eq. (1).

                                 Eq. (5)

Even small errors in ΔK can cause large deviations 
in the slope 𝑚 and intercept 𝑙𝑜𝑔 𝐶, making least-
squares fitting highly unstable.

Moreover, under variable amplitude loading and 
non-isothermal conditions, the assumption of constant 
𝐶 and 𝑚  becomes invalid, and fatigue crack growth 
becomes path-dependent. This renders deterministic 
estimation methods insufficient.

To overcome these challenges, a Bayesian Physics-In-
formed Neural Network (B-PINN) is used as a frame-
work [4]. The parameters θ = (𝐶, 𝑚) are treated as 
latent variables with a posterior distribution:

                                        Eq. (6)

with the likelihood term computed from sensor-ob-
served crack lengths  a(i) as:

           Eq.(7)

Sampling from this posterior is calculated by Hamil-
tonian Monte Carlo (HMC), which defines a Hamil-
tonian as:

              Eq.(8)

and this equation is extended by:

                            Eq.  (9)

Alternatively, Variational Inference approximates the 
posterior by a parametric density  : 

                                   Eq.(10)

and optimizes the parameters by minimizing the equa-
tion:

 
                                     Eq.(11)

Finally, the overall training objective incorporates 
Paris’ Law via a soft penalty:
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                 Eq. (4)

where

                Eq,(12)

enforces the tendency of applying the fatigue law, 
and 𝐿𝑑𝑎𝑡𝑎 accounts for observational constancy.

Methodology
Model Architecture
In this study, the FD004 subset of the NASA 
CMAPSS dataset was selected for training and 
evaluation of the proposed predictive model. The 
CMAPSS (Commercial Modular Aero-Propulsion 
System Simulation) dataset, developed by NASA, is 
widely used for research in aircraft engine perfor-
mance prediction and health monitoring. It contains 
high-fidelity simulated sensor data generated under 
realistic flight and degradation conditions, rather 
than real-world flight data.

The FD004 subdataset best approximates the 
long-cycle, full-condition degradation of turbofan 
engines like the CFM56-7B, with high variability in 
operating conditions and complete sensor readings 
relevant to fatigue dynamics. The CMAPSS dataset 
contains 21 sensor measurements per cycle, along 
with three operational settings, generated using NA-
SA’s high-fidelity turbofan engine simulator. These 
sensors include key parameters such as pressure, 
temperature, and shaft rotational speeds (RPM), 
making the dataset highly suitable for fatigue mode-
ling and failure prediction research.

Initially, the goal of this research was to focus spe-
cifically on CFM56-7B engine degradation, given its 
widespread use in commercial aviation and its im-
portance in understanding fatigue-related failures. 

However, there was a limitation of datasets due to the 
lack of publicly available failures of certain engine 
types. According to the previous study by Saxena et 
al [3], the CMAPSS dataset is a widely recognized 
resource for simulating jet engine degradation and

fatigue crack propagation.

While the dataset is not engine-specific, to further 
align the training input space with the operational 
characteristics of the CFM56-7B, we performed data 
preprocessing.

To preprocess the raw CMAPSS dataset with the ac-
tual flight conditions of the CFM56-7B mentioned 
in Section 2.1.2, we applied an additional sorting 
step before normalization and modeling. In NASA’s 
CMAPSS dataset, the three operating settings (op_1, 
op_2, op_3) correspond respectively to altitude (per 
thousands of feet), Mach number (Ma), and ambi-
ent pressure (kPa). The following criteria were made 
to identify, among the highly diverse and extensive 
CMAPSS engine datasets, those operational segments 
most closely aligned with the characteristics of the 
CFM56-7B engine. Further details are provided in 
Section 2.1.2.

•	 op_1 > 35	 selects engine states at altitudes 
above 35,000 ft, which corresponds to the typ-
ical cruise ceiling of the 737NG equipped with 
CFM56-7B engines. At this altitude range, the 
engine is flat-rated to maintain maximum thrust 
even under ISA +50°C conditions.

•	 op_2 > 0.75 captures high-speed phases where 
the Mach number exceeds 0.75. This aligns 
with the Mach 0.78–0.84 cruise regime of 
narrow-body commercial aircraft, ensuring 
that aerodynamic loads are consistent with re-
al-world use.

•	 	 op_3 < 100	 enforces ambient pressure lev-
els below 100 kPa, reflecting the low-pressure 
environment experienced at cruising altitudes 
(typically <30 kPa at 35,000 ft), which ampli-
fies thermal stress on turbine components.

This set of three criteria narrows the dataset down to 
a smaller and more consistent group of engine cycles. 
After applying the filters, about 37.12% of the origi-
nal FD004 data remains. This filtered subset more ac-
curately reflects the high-stress operating conditions 
where fatigue cracks are likely to form in CFM56-7B 
engine components.

For PIML, 12 sensor channels were selected based 
on their relevance to modeling engine stress and
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and fatigue according to a previous study [3]. These 
selected 12 sensors—sensors 2, 3, 4, 7, 11, 12, 13, 
14, 15, 17, and 20—are critical values to determine 
fatigue cracks that are likely to be formed. To ensure 
uniformity and eliminate scale differences between 
sensors, the sensor data was normalized using Min-
Max scaling. This scaling method maps all sensor 
values between 0 and 1. The table below is sourced 
from [9].

sensor # sensor name
2 Total pressure at fan inlet (Ps30)
3 Total pressure in bypass duct (Ps50)
4 HPC outlet pressure (P30)
7 High-pressure turbine outlet tempera-

ture (T50)
11 Static pressure at HPC outlet (P40)
12 Ratio of fuel flow to Ps30
13 Corrected fan speed (Nc)
14 Corrected core speed (Nc)
15 Bypass Ratio (BPR)
17 Bleed Enthalpy
20 HPT coolant bleed
21 LPT coolant bleed

Table 1: Sensor Name and Number used in NASA 
CMAPSS FD004 dataset.

Sensors 2, 4, 7, 12, 13, and 14 were chosen based 
on the correlation heatmap analysis, which revealed 
both high intra-group consistency and complementa-
ry diversity. Sensors 2, 7, and 12 show near-perfect 
correlations (≥0.99), capturing critical operational 
trends that remain consistent across engine cycles. 
Sensor 4 demonstrates moderate correlation with 
other variables, offering additional dynamic infor-
mation. Meanwhile, sensors 13 and 14 exhibit strong 
mutual correlation (≈0.79) and contribute distinct 
non-linear and transient characteristics, making the 
combination of these sensors suitable and compre-
hensive for modeling fatigue-related behavior.

As mentioned above, this study presents a Hybrid 
PINN designed to model fatigue crack growth in jet 
engine components using sensor data. The frame-
work integrates physical laws—specifically Paris’

Law—with neural representations to infer latent 
stress and crack growth rates. Since the direct stress 
measurements are unavailable in the C-MAPSS da-
taset, the model estimates stress as a latent variable 
from six selected sensors. The estimated stress is then 
used to compute the stress intensity factor ΔK using 
Eq. (4) , where crack length evolves over time. The 
hybrid model couples this physics-informed estimate 
with a residual neural network to learn non-ideal ef-
fects not captured by theory. To ensure the model ad-
heres to both data-driven patterns and physical laws, 
a dual-component loss function is implemented. The 
prediction loss minimizes the mean squared error be-
tween predicted and theoretical crack growth values, 
while the physics loss enforces consistency with Paris’ 
Law by comparing predicted da/dN against physical-
ly expected rates. The model is trained on cycle-level 
data across all engine units, with sensor inputs scaled 
and batch-fed using a custom PyTorch dataset. The 
resulting framework offers a generalizable approach 
to estimate crack growth rates under realistic operat-
ing conditions, enabling both interpretability through 
physical grounding and flexibility through learned re-
siduals.

                 
Figure 4: Architecture of the crack growth modeling 
using Hybrid-PINN.

Uncertainty Modeling (Bayesian PINN)
To calculate the epistemic uncertainty in crack growth 
prediction, a Bayesian PINN (B-PINN) model was 
employed by modeling the Paris’ Law parameters C
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and m as probabilistic distributions. Utilizing Monte Carlo dropout during inference, the model makes multi-
ple forward passes to approximate the posterior distribution of predicted crack growth rates. This enables the 
calculation of both the mean and standard deviation of uncertainty of the prediction at each cycle. This ap-
proach allows the PINN model to convey uncertainty-aware predictions for fatigue behavior under data-lim-
ited and noisy sensor conditions.

                       
Figure 5: Architecture of the Bayesian Physics-Informed Neural Network (B-PINN) for Fatigue Crack 
Growth Modeling.

•	 a physics-based Paris’ Law branch that com-
putes fatigue crack growth using inferred stress 
values, and

•	 a residual data-driven branch that learns nonlin-
earities not captured by the physics model.

The Paris’ Law branch estimates the crack growth rate 
mentioned in Eq. (1) where the constants used 
were  𝐶 =  1 × 1 0 − 12  𝑚 = 3 . 2  , and geometry cor-
rection  factor   𝑌 = 1. 1, embedded as domain knowl-
edge [10], [11].

An α-value of 0.5 was used to equally weight the phys-
ics-based and data-driven branches during training. 
For uncertainty modeling, Monte Carlo Dropout was 
applied at inference time. Specifically, 30 stochastic 
forward passes were performed per prediction cycle, 
allowing estimation of epistemic uncertainty through 
the standard deviation of predicted crack growth rates. 
This approach enables cycle-wise confidence intervals 
under data-limited and noisy sensor conditions.

The full Python code used for model training, testing, 
and visualization is provided in the Appendix.

Metrics of the PINN Model
To evaluate the interpretability of the Hybrid PINN 
model, we follow the analysis framework suggested 
by Raissi et al. (2017) [8]. Their study showed that 
sensor_2 (analogous to Nf, or fan speed) and sen-
sor_12 (related to Ps30, or static pressure) contribut-
ed significantly to crack growth prediction—both of 
which are among our selected features.

In our model, the StressNet sub-network plays a key 
role in this process. It takes multivariate sensor readings

Baselines for Comparison Using RNN and Pure Par-
is’ Law
Referring to the performance of the proposed hy-
brid PINN model [4], a recurrent neural network 
(RNN) and a pure Paris’ Law model with fixed lit-
erature-based parameter C =  3 × 1 012 and 𝑚 = 3. 1 
were implemented. The pure Paris baseline serves 
as a physics-only reference, applying uniform crack 
growth prediction across all engine units without 
learning from sensor data. This comparison high-
lights the hybrid PINN model of data-driven learning 
and adaptive stress estimation in capturing unit-spe-
cific degradation patterns.

Experimental Setup
Dataset and Experimental Setup
The experimental setup uses the FD004 subset of 
the C-MAPSS dataset. Six key sensors—sensor_2, 
sensor_4, sensor_7, sensor_12, sensor_13, and sen-
sor_14—were selected based on physical interpreta-
bility and statistical significance from the correlation 
heatmap. These sensors were chosen due to their 
mutual correlation and relevance to fatigue-related 
behavior, with sensor_2 (fan speed) and sensor_12 
(static pressure) being particularly aligned with fa-
tigue propagation indicators reported in prior studies 
[8].

Sensor data was scaled using MinMax normaliza-
tion, and training was performed over 10 epochs 
using a Hybrid Physics-Informed Neural Network 
(Hybrid PINN). The model consists of three 
components shown below. 

•	 a StressNet sub-network that maps sensor in-
put to latent stress values  σ,
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Unit 3 exhibits a crack growth pattern with a strong 
upward trend after 80 cycles. The Bayesian uncertain-
ty again remains minimal, highlighting the predictive 
confidence of the model in this unit. The latent stress 
plot shows consistent high-frequency variations, but 
the uncertainty is controlled, suggesting that the mod-
el remains stable despite sensor-driven disturbances.

Overall, the visualization of these top-performing 
units confirms the B-PINN’s ability to not only pro-
vide accurate crack growth predictions but also offer 
interpretable uncertainty quantification. This dual ca-
pability is essential for real-world deployment in fa-
tigue diagnostics of CFM56-7B engines, especially 
under data-limited and sensor-noisy conditions.

   

   

Figure 6: Plots for Unit 3 (predicted crack growth 
rate, Bayesian da/dN with uncertainty, and inferred 
stress trajectory with latent uncertainty)

Discussion
The alpha value 0.5 reflects an equal weighting be-
tween the physics-based Paris’ Law loss and the da-
ta-driven residual loss. While this allows the model 
to benefit from both physical regularization and em-
pirical learning, it may not be an optimal value for the

as input and estimates a latent internal stress value \
sigma. This stress is then used to compute the stress 
intensity factor ∆𝐾 = 𝑌 · σ · π𝑎, which is fed into 
Paris’ Law to calculate crack growth rate. The resid-
ual_net branch, in parallel, learns any remaining da-
ta-driven discrepancies. Both sub-networks are im-
plemented using PyTorch’s nn.Sequential modules.

Results and Analysis
Model Performance and Training Stability
At Epoch 0, average loss is 537.81, which is a high 
value. This loss value sharply drops to 0.0843 by 
epoch 9, indicating that the model is well-adjust-
ing the iterations. From epoch 0 to 2, loss decreases 
drastically from 537.81 to 7.5516 to 1.7319. Aver-
age loss At epoch 5, average loss is 0.0413, and at 
epoch 9, average loss reaches 0.7795. The training 
loss decreased rapidly from 537.81 to 0.084 over 10 
epochs, indicating fast and stable convergence of the 
Hybrid PINN model. Overall, we can assure that the 
model is capable of learning the underlying phys-
ics-based loss function, but some instability remains 
in later stages of training.

Crack Growth Rate Trajectory Analysis
To interpret the result of the graph intuitively, the 
Unit 3 model – with the lowest average uncertain-
ty – was selected and visualized in detail (see Fig. 
7). The figure includes three plots: predicted crack 
growth rate, Bayesian da/dN with uncertainty, and 
inferred stress trajectory with latent uncertainty.

The predicted crack growth rate graph’s x-axis rep-
resents engine cycles, and the y-axis (blue) shows 
the predicted crack growth rate da/dN in mm/cycle.

Bayesian PINN Prediction + Uncertainty Graph’s 
x-axis indicates engine cycles, the left y-axis (blue) 
shows the mean predicted crack growth rate da/dN 
in mm/cycle, and the right y-axis (red) presents the 
epistemic uncertainty as the standard deviation.

Stress Prediction and Uncertainty Graph’s x- axis 
represents engine cycles, the left y-axis (blue) dis-
plays the inferred internal stress in MPa estimated 
by the stress_net, and the right y-axis (red) shows 
the standard deviation of predicted stress as uncer-
tainty.
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post-maintenance inspection reports limits our ability 
to validate the model against observed crack propaga-
tion or component failure. This constraint affects the 
generalizability of the results and should be consid-
ered when interpreting the findings.
Future work should incorporate operational data from 
real engines to fully evaluate the model’s robustness 
and diagnostic utility.

Ultimately, these refinements would enhance the 
model’s applicability in real-world Structural Health 
Monitoring (SHM) systems and contribute to safer, 
more reliable predictive maintenance frameworks in 
commercial aviation.

Conclusion
This study presents hybrid Physics-Informed Neural 
Network (PINN) and Bayesian PINN (B-PINN) mode-
ling for predicting fatigue-induced crack growth in the 
CFM56-7B jet engine and uncertainty of the predicted 
crack growth. By applying Paris’ Law into the neural 
network loss function and integrating sensor-derived 
stress estimates as residual neural networks (RNN), 
the model successfully integrates physical theory with 
data-driven learning. The results show that the model 
can accurately track crack growth trajectories, esti-
mate latent stress behavior, and provide reliable un-
certainty calculation using Bayesian inference. The 
fixed threshold value (0.00025 inch/cycle) allowed 
the model to clearly identify the potential risk of the 
crack growth.

Looking forward, future improvements mentioned in 
the Discussion part are required. These improvements 
include refining the α-balancing parameter, enhanc-
ing training stability across epochs, and validating the 
model against actual post-maintenance data. Deploy-
ing this PINN model in real-world SHM (Structural 
Health Monitoring) systems may enable predictive 
maintenance (PdM) scheduling and help prevent cata-
strophic engine failures in jet engines such as CFM56-
7B engines.

Moreover, real-world validation using post-flight 
CFM56-7B engine data remains a crucial step to con-
firm the model’s generalizability and operational ac-
curacy. Adding such real-flight data would provide 
essential insights on model performance under actual 
service conditions and support further development 

perfect machine learning model. In the future using 
a dynamic α schedule or Bayesian optimization to 
tune α during training, especially since overfitting to 
noisy sensor data or underfitting physical laws may 
occur at different stages of training, will be benefi-
cial for finding the exact value of the alpha.

While Monte Carlo dropout provides epistemic un-
certainty, certain cycle regions showed high pre-
dictive uncertainty, as shown in Fig. 7, potentially 
due to underrepresented stress regimes in training. 
Applying Bayesian ensembling or using HMC sam-
pling might result in better posterior approximation.

Another significant limitation lies in the latent stress 
inference mechanism. Since true stress measure-
ments are not available in the CMAPSS dataset, the 
model relies solely on sensor proxies to estimate in-
ternal stresses. This assumption introduces a mod-
eling gap—especially under complex, multiaxial 
loading conditions or dynamic engine phases (e.g., 
takeoff, descent)—where sensor-stress correlation 
may be nonlinear or weak. Without direct stress 
calibration from test-rig data or finite element val-
idation, the inferred stress remains a best-guess ap-
proximation, which can propagate uncertainty into 
the fatigue crack predictions.

A threshold value of 0.00025 inch/cycle is applied in 
this study to identify the starting point of
high-risk fatigue crack growth behavior. This value is 
referenced from the standard shown in ASTM E647 
[5]. In practical applications, this threshold serves 
as a critical limit beyond which crack propagation 
is considered potentially unstable or dangerous. Al-
though the threshold provides a useful benchmark 
for risk classification, it varies a lot depending on 
specific operating conditions, material microstruc-
tures, or environmental influences such as tempera-
ture and load spectrum. Therefore, in future studies, 
specific calibration or experimental validation might 
be required for specific engine types or service sce-
narios.

While the proposed framework demonstrates strong 
predictive capabilities on simulated datasets, its ap-
plicability to real-world scenarios remains unveri-
fied due to the absence of actual failure data from 
CFM56-7B engines. The lack of flight records and
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beyond simulation-based testing.
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