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Abstract

Existing methodologies for predictive maintenance in aviation engines have largely diverged into data-centric
and physics-centric models, each constrained by their unchangeable limitations. In this study, a hybrid frame-
work integrating both perspectives was developed to address fatigue-induced failures in the CFM56-7B en-
gine. Specifically, a Bayesian Physics-Informed Neural Network (B-PINN) was constructed, embedding Paris’
Law within a deep learning structure and modeling key fatigue parameters as probabilistic distributions.
Selected sensor data from NASA's CMAPSS FD004 dataset was employed to assume latent stress signals and
simulate fatigue crack propagation. The results show that the proposed model has advantages on interpret-
ability and reliability of fatigue predictions but also quantifies uncertainty through variational inference and
Monte Carlo dropout.
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Introduction

Background

The Boeing 737 is one of the most widely used aircraft models. According to Boeing Company’s Boeing
Commercial and Deliveries data through 12/31/2024 [1], a total of 19,579,737 models were purchased by
commercial airlines. At the same time, Boeing 737 models have experienced many accidents. Although the
Boeing 737-600/700/800/900 is one of the most widely used aircraft models globally, its hull loss accident
rate (0.17%) is not exceptionally low compared to other frequently operated models.
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Accident Rates by Airplane Type
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Figure 1: Accident Rates by Airplane Type.

The Boeing aircraft models 737-600, 700, 800, and
900 all use CFM56-7B engines. CFM56 is a turbofan
jet engine series made by CFM International. Among
all of the CFM56 engine series, the CFM56-7B is
the most advanced model and requires a low cost of
operation.

One of the most fatal causes of airplane accidents
is due to SCF (System/Component Failure). Many
types of SCFs exist, including engine fatigue, ther-
mal stress, foreign object debris/damage (FOD),
electrical failures. This research primarily focuses on
fatalities due to engine fatigue. This study provides
Physics-Informed Machine Learning (PIML) to pre-
vent aircraft accidents caused by engine fatigue of
the jet engine CFM56-7B. The research investigates
how the PIML model can detect early signs of fa-
tigue, providing information for the early replace-
ment of fatigued engines.

Problem Statement

Existing Remaining Useful Life (RUL) prediction
methods for jet engines are usually divided into two
types: purely data-driven models and purely phys-
ics-based models. Data-driven models are flexible,
but they don’t really explain what’s happening inside
the engine, and they also need a lot of failure data —
which is pretty much impossible in aviation, where
failures are supposed to be rare. On the other hand,
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physics-based models rely too much on complicated
formulas and material constants, and getting those
constants right without a sufficient number of exper-
iments is not realistic. Hence, this study focuses on
using a physics-informed machine learning (PIML)
approach and data-driven prediction with physical
laws like Paris’ Law to make the model both accurate
and interpretable.

Research Objectives and Contributions

The Physics-Informed Neural Network (PINN) devel-
oped in this study is structured around the classical
Paris’ Law formulation of fatigue crack growth, ex-
pressed as 5~ = C(AK)", where C and m are mate-
rial-dependent parameters.. These parameters are reg-
ularized using empirical values drawn from titanium
alloy fatigue datasets for Ti-6Al-4V, per ASTM E647
and related studies [5,6]. Sensor features from the
FDO004 subset of the C-MAPSS dataset [3] are used as
model inputs, with domain-guided selection identify-
ing low-pressure turbine temperature (T24), pressure
ratio (P30), vibration, and fan/core rotational speeds
(Nf, Nc) as principal fatigue indicators. The hybrid
PINN loss function incorporates both data fidelity by
RNN loss function and physics-informed terms, min-
imizing deviation from observed crack growth trajec-
tories while ensuring compliance with Paris’ Law. Fol-
lowing [2], a bias correction component is added via an
RNN-informed residual to accommodate deviations
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Theoretical Background
Fatigue Crack Growth and Paris’ Law Standard for-
mula of Paris’ law is defined as

d m
== C - (AK)

Eq. (1)

where a is crack length, N is load cycles, AK is stress
intensity factor range, and C is the crack growth co-
efficient; m is the Paris exponent. Usually in metal-
lic blade condition, constant C and m vary as shown
below. [5]

1

ceo?,107%, me [2.54]

Eq. (2)

Paris’ law is applied for measuring fatigue crack
growth rates under constant amplitude loading. It
shows that crack length per load cycle is proportion-
al to the stress intensity factor range. This formula-
tion works as the fundamental concept in this paper’s
Physics-Informed Neural Network (PINN) model.

Not only Paris’ law, but there are also many equa-
tions explaining crack growth of the fatigue materi-
al, such as Miner’s rule. Miner’s rule assumes linear
accumulation of fatigue damage, but it fails to ac-
curately represent real-world damage under variable
amplitude loading. In contrast, Paris’ law models
incremental crack growth per cycle, which makes
the model better capture the nonlinear behaviors.
According to [6], nonlinear summation methods es-
timate failure up to 23% earlier than Miner’s predic-
tion.

AK =Y+ o -+/na
v Eq. (3)

In this equation, is a stress intensity factor range,
and is the crack length. is the effective stress A K
a ¢ applied to the material, and and are material
constants that are specific to the engine material
C m (e.g., Ti-6Al-4V used in turbine blades). is
a geometry factor. According to [7], the model
treats Y mechanical stress not as a direct meas-
urement but as a latent variable inferred from
sensor inputs, ¢ especially under operating condi-
tions like altitude, shaft speed, and total

temperature. This study derives the approach of
[7] applying the formula of the stress intensity factor
range.

In this equation, AK is a stress intensity factor range,
and a is the crack length. o is the effective stress ap-
plied to the material, and C and m are material con-
stants that are specific to the engine material (e.g., Ti-
6AI-4V used in turbine blades). Y is a geometry factor.
According to [7], the model treats mechanical stress ¢
not as a direct measurement but as a latent variable in-
ferred from sensor inputs, especially under operating
conditions like altitude, shaft speed, and total temper-
ature. This study derives the approach of [7] applying
the formula of the stress intensity factor range.

Machine Learning Model

Physics-Informed Neural Network (PINN)

PINN is deep learning models that incorporate phys-
ics-based loss terms (e.g., PDEs or ODEs) in the
training objective. It takes predictive maintenance a
step further by combining physics-based models with
machine learning. Unlike traditional machine learn-
ing models that rely only on historical data, PIML in-
corporates physical principles and engineering fields
like fatigue models, thermodynamics, and material
stress analysis to make better predictions [8]. Using
the PIML model, machine learning models’ interpret-
ability, robustness, and generalization with limited
data increase outstandingly. Physics-Informed Ma-
chine Learning (PIML) For the CFM56-7B engine,
PIML for the CFM56-7B engine can detect fatigue
cracks. By using a combination of finite element anal-
ysis (FEA) and machine learning, a machine learning
model can identify early fatigue cracks. Also, by using
computational fluid dynamics (CFD) along with neu-
ral networks, it can analyze how temperature changes
impact turbine blade durability due to thermal stress
of metal blades.
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Figure 2: Schematic of a Physics-Informed Neural Network (PINN).

In fatigue modeling under corrosive environments, a hybrid PINN structure can be implemented with a recur-
rent neural network (RNN) learning residual dynamics (e.g., oxidation effects).
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Fig. 3 Proposed RNN cell for corrosion-fatigue crack propagation. MLP stands for multilayer percep-
tron, AS, represents stress range is stress ratio, and Ct'm means corrosion environment index.

The physics loss from Paris’ Law and data mismatch were balanced using dynamic weighting:

=a-L +(1—¢1)-LRNN

total physics

Eq. (4)

Where L is the overall loss function used to train the model; Lphysics 1s a loss function that shows how well the
model follows Paris’ Law; and L, is a loss function that represents how the model matches with the actual
sensor data. a is a weighting coefficient that controls the weighted value between the physics-based loss func-
tion and data-driven loss function. By weighting between two loss functions, the hybrid model encourages

adopting bias correction modules to capture unmodeled fatigue phenomena (like thermal fatigue or corrosion).

According to a study by A. Yucesan [5], the hybrid PINN predicts fatigue with higher accuracy by applying
physics. The study by Yucesan showed a 25% RMSE reduction compared to black-box DNNs.

This study addresses this critical gap by introducing a hybrid Bayesian Physics-Informed Neural Network
designed to estimate latent internal stress directly from sensor data and simulate fatigue crack growth via em-
bedded Paris Law dynamics. Unlike traditional methods that treat stress as a known or externally measured
quantity, this framework models stress as a hidden variable, inferred from selected features in the C-MAPSS
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dataset filtered to resemble CFMS56-7B operating
conditions [12]. This inference is then integrated
into a physics-based crack growth calculation us-
ing AK and Paris’ Law, while Bayesian uncertainty
modeling accounts for sensor noise and parameter
ambiguity. By jointly learning both physical and sta-
tistical relationships, the proposed method offers a
novel approach to fatigue life prediction—uniquely
suited for real-world aviation scenarios where stress
cannot be directly measured yet is the primary driver
of structural failure.

Challenges in Parameter Estimation of C, m
Constants C and m in Eq. (1) are easily affected by
the material microstructure, heat treatment, and sur-
face design. Even within the same alloy (e.g., Ti-6Al-
4V), the value can fluctuate a lot. For an accurate es-
timation of the constant, stress intensity factors must
be calculated using Digital Image Correlation (DIC)
and the Extended Finite Element Method (XFEM).
However, due to the limitations of these methodolo-
gies, direct estimation of C and m using techniques
like DIC or XFEM has challenges in practical fa-
tigue analysis. Specifically, accurate estimation of
the stress intensity factor AK which is defined by:

AK =Y - o -*\,-"E Eq. (3)

where Y is the geometry correction factor, ¢ is the
applied stress, and a is the crack length. However,
in various influences such as turbine blades, Y may
vary spatially and cannot be expressed analytically,
necessitating FEM-based estimation.

Even when AK is known, fitting the Paris’ Law Eq.
(1) requires accurate measurement of both da/dN
and AK, which are often corrupted by noise in the
dataset. The equation below shows when we take
logarithms to linearize the relationship, based on the
variables given in Eq. (1).

Iog(s—:,) = log C + mlog(AK) Eq (5)

Even small errors in AK can cause large deviations
in the slope m and intercept log C, making least-
squares fitting highly unstable.

Moreover, under variable amplitude loading and
non-isothermal conditions, the assumption of constant
C and m becomes invalid, and fatigue crack growth
becomes path-dependent. This renders deterministic
estimation methods insufficient.

To overcome these challenges, a Bayesian Physics-In-
formed Neural Network (B-PINN) is used as a frame-
work [4]. The parameters 0 = (C, m) are treated as
latent variables with a posterior distribution:

P(8]D) e« P(D|B) - P(B) Eq. (6)
with the likelihood term computed from sensor-ob-
served crack lengths a” as:

{E}}'ﬂ
herved )

N 1 (ﬂr.-|u4r=1:i](9}_ﬂu
P(D|B) =] —exp(— Z
i=1 "V

2o

2o

Eq.(7)

Sampling from this posterior is calculated by Hamil-
tonian Monte Carlo (HMC), which defines a Hamil-
tonian as:

H(®,7) =— log P(D|B) — log P(8) + —r'M™'r
Eq.(8)
and this equation is extended by:
de -1 dr
— =M r, /—=—-V._U(0)
dt dt a Eq. (9)

Alternatively, Variational Inference approximates the
posterior by a parametric density : Q(6; 0):

2
Q(B- CJ = H Q(Bi: cu.i’ CPJ‘)
i=1 Eq-(lo)

and optimizes the parameters by minimizing the equa-
tion:

D,,(Q(8) || P(8ID)) ~ E,_,[log Q(8) — log P(8) — log P(D|6)
Eq.(11)

Finally, the overall training objective incorporates
Paris’ Law via a soft penalty:
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total =a Lphysics + (1 - {1) ) LRNN
Eq.(4)
where
N .
da (D (i), m, 2
=X(@r —C@K))
i

physics

Eq,(12)

enforces the tendency of applying the fatigue law,
and L, accounts for observational constancy.

Methodology

Model Architecture

In this study, the FD004 subset of the NASA
CMAPSS dataset was selected for training and
evaluation of the proposed predictive model. The
CMAPSS (Commercial Modular Aero-Propulsion
System Simulation) dataset, developed by NASA, is
widely used for research in aircraft engine perfor-
mance prediction and health monitoring. It contains
high-fidelity simulated sensor data generated under
realistic flight and degradation conditions, rather
than real-world flight data.

The FDO004 subdataset best approximates the
long-cycle, full-condition degradation of turbofan
engines like the CFM56-7B, with high variability in
operating conditions and complete sensor readings
relevant to fatigue dynamics. The CMAPSS dataset
contains 21 sensor measurements per cycle, along
with three operational settings, generated using NA-
SA’s high-fidelity turbofan engine simulator. These
sensors include key parameters such as pressure,
temperature, and shaft rotational speeds (RPM),
making the dataset highly suitable for fatigue mode-
ling and failure prediction research.

Initially, the goal of this research was to focus spe-
cifically on CFM56-7B engine degradation, given its
widespread use in commercial aviation and its im-
portance in understanding fatigue-related failures.

However, there was a limitation of datasets due to the
lack of publicly available failures of certain engine
types. According to the previous study by Saxena et
al [3], the CMAPSS dataset is a widely recognized
resource for simulating jet engine degradation and

fatigue crack propagation.

While the dataset is not engine-specific, to further
align the training input space with the operational
characteristics of the CFM56-7B, we performed data
preprocessing.

To preprocess the raw CMAPSS dataset with the ac-
tual flight conditions of the CFM56-7B mentioned
in Section 2.1.2, we applied an additional sorting
step before normalization and modeling. In NASA’s
CMAPSS dataset, the three operating settings (op 1,
op_2, op_3) correspond respectively to altitude (per
thousands of feet), Mach number (Ma), and ambi-
ent pressure (kPa). The following criteria were made
to identify, among the highly diverse and extensive
CMAPSS engine datasets, those operational segments
most closely aligned with the characteristics of the
CFM56-7B engine. Further details are provided in
Section 2.1.2.

e op 1>35 selects engine states at altitudes
above 35,000 ft, which corresponds to the typ-
ical cruise ceiling of the 737NG equipped with
CFM56-7B engines. At this altitude range, the
engine is flat-rated to maintain maximum thrust
even under ISA +50°C conditions.

e op_2>0.75 captures high-speed phases where
the Mach number exceeds 0.75. This aligns
with the Mach 0.78-0.84 cruise regime of
narrow-body commercial aircraft, ensuring
that aerodynamic loads are consistent with re-
al-world use.

e op 3<100 enforces ambient pressure lev-
els below 100 kPa, reflecting the low-pressure
environment experienced at cruising altitudes
(typically <30 kPa at 35,000 ft), which ampli-
fies thermal stress on turbine components.

This set of three criteria narrows the dataset down to
a smaller and more consistent group of engine cycles.
After applying the filters, about 37.12% of the origi-
nal FD004 data remains. This filtered subset more ac-
curately reflects the high-stress operating conditions
where fatigue cracks are likely to form in CFM56-7B
engine components.

For PIML, 12 sensor channels were selected based
on their relevance to modeling engine stress and
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and fatigue according to a previous study [3]. These
selected 12 sensors—sensors 2, 3, 4, 7, 11, 12, 13,
14, 15, 17, and 20—are critical values to determine
fatigue cracks that are likely to be formed. To ensure
uniformity and eliminate scale differences between
sensors, the sensor data was normalized using Min-
Max scaling. This scaling method maps all sensor
values between 0 and 1. The table below is sourced
from [9].

2 Total pressure at fan inlet (Ps30)

3 Total pressure in bypass duct (Ps50)

4 HPC outlet pressure (P30)

7 High-pressure turbine outlet tempera-
ture (T50)

11 Static pressure at HPC outlet (P40)

12 Ratio of fuel flow to Ps30

13 Corrected fan speed (Nc¢)

14 Corrected core speed (Nc¢)

15 Bypass Ratio (BPR)

17 Bleed Enthalpy

20 HPT coolant bleed

21 LPT coolant bleed

Table 1: Sensor Name and Number used in NASA
CMAPSS FD004 dataset.

Sensors 2, 4, 7, 12, 13, and 14 were chosen based
on the correlation heatmap analysis, which revealed
both high intra-group consistency and complementa-
ry diversity. Sensors 2, 7, and 12 show near-perfect
correlations (>0.99), capturing critical operational
trends that remain consistent across engine cycles.
Sensor 4 demonstrates moderate correlation with
other variables, offering additional dynamic infor-
mation. Meanwhile, sensors 13 and 14 exhibit strong
mutual correlation (=0.79) and contribute distinct
non-linear and transient characteristics, making the
combination of these sensors suitable and compre-
hensive for modeling fatigue-related behavior.

As mentioned above, this study presents a Hybrid
PINN designed to model fatigue crack growth in jet
engine components using sensor data. The frame-
work integrates physical laws—specifically Paris’

Law—with neural representations to infer latent
stress and crack growth rates. Since the direct stress
measurements are unavailable in the C-MAPSS da-
taset, the model estimates stress as a latent variable
from six selected sensors. The estimated stress is then
used to compute the stress intensity factor AK using
Eq. (4) , where crack length evolves over time. The
hybrid model couples this physics-informed estimate
with a residual neural network to learn non-ideal ef-
fects not captured by theory. To ensure the model ad-
heres to both data-driven patterns and physical laws,
a dual-component loss function is implemented. The
prediction loss minimizes the mean squared error be-
tween predicted and theoretical crack growth values,
while the physics loss enforces consistency with Paris’
Law by comparing predicted da/dN against physical-
ly expected rates. The model is trained on cycle-level
data across all engine units, with sensor inputs scaled
and batch-fed using a custom PyTorch dataset. The
resulting framework offers a generalizable approach
to estimate crack growth rates under realistic operat-
ing conditions, enabling both interpretability through
physical grounding and flexibility through learned re-
siduals.

Sensor Inputs
(sensor_2 ~ sensor_14)

StressNet Previous Crack

o = f{sensor)

AK = Y-oV(ma)

ResidualNet

a-Physics + (1-at)-Residual

Crack Growth Rate

Figure 4: Architecture of the crack growth modeling
using Hybrid-PINN.

Uncertainty Modeling (Bayesian PINN)

To calculate the epistemic uncertainty in crack growth
prediction, a Bayesian PINN (B-PINN) model was
employed by modeling the Paris’ Law parameters C
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and m as probabilistic distributions. Utilizing Monte Carlo dropout during inference, the model makes multi-
ple forward passes to approximate the posterior distribution of predicted crack growth rates. This enables the
calculation of both the mean and standard deviation of uncertainty of the prediction at each cycle. This ap-
proach allows the PINN model to convey uncertainty-aware predictions for fatigue behavior under data-lim-

ited and noisy sensor conditions.
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Figure 5: Architecture of the Bayesian Physics-Informed Neural Network (B-PINN) for Fatigue Crack

Growth Modeling.

Baselines for Comparison Using RNN and Pure Par-
is” Law

Referring to the performance of the proposed hy-
brid PINN model [4], a recurrent neural network
(RNN) and a pure Paris’ Law model with fixed lit-
erature-based parameter C= 3 x 1 02 and m=3. 1
were implemented. The pure Paris baseline serves
as a physics-only reference, applying uniform crack
growth prediction across all engine units without
learning from sensor data. This comparison high-
lights the hybrid PINN model of data-driven learning
and adaptive stress estimation in capturing unit-spe-
cific degradation patterns.

Experimental Setup

Dataset and Experimental Setup

The experimental setup uses the FD004 subset of
the C-MAPSS dataset. Six key sensors—sensor 2,
sensor_4, sensor 7, sensor 12, sensor 13, and sen-
sor 14—were selected based on physical interpreta-
bility and statistical significance from the correlation
heatmap. These sensors were chosen due to their
mutual correlation and relevance to fatigue-related
behavior, with sensor 2 (fan speed) and sensor 12
(static pressure) being particularly aligned with fa-
tigue propagation indicators reported in prior studies

8].

Sensor data was scaled using MinMax normaliza-
tion, and training was performed over 10 epochs
using a Hybrid Physics-Informed Neural Network
(Hybrid PINN). The model consists of three
components shown below.
* a StressNet sub-network that maps sensor in-
put to latent stress values o,

* a physics-based Paris’ Law branch that com-
putes fatigue crack growth using inferred stress
values, and

» aresidual data-driven branch that learns nonlin-
earities not captured by the physics model.

The Paris’ Law branch estimates the crack growth rate
mentioned in Eq. (1) where the constants used

were C= 1X10"2 m=3.2, and geometry cor-
rection factor Y =1. 1, embedded as domain knowl-
edge [10], [11].

An a-value of 0.5 was used to equally weight the phys-
ics-based and data-driven branches during training.
For uncertainty modeling, Monte Carlo Dropout was
applied at inference time. Specifically, 30 stochastic
forward passes were performed per prediction cycle,
allowing estimation of epistemic uncertainty through
the standard deviation of predicted crack growth rates.
This approach enables cycle-wise confidence intervals
under data-limited and noisy sensor conditions.

The full Python code used for model training, testing,
and visualization is provided in the Appendix.

Metrics of the PINN Model

To evaluate the interpretability of the Hybrid PINN
model, we follow the analysis framework suggested
by Raissi et al. (2017) [8]. Their study showed that
sensor 2 (analogous to Nf, or fan speed) and sen-
sor 12 (related to Ps30, or static pressure) contribut-
ed significantly to crack growth prediction—both of
which are among our selected features.

In our model, the StressNet sub-network plays a key
role in this process. It takes multivariate sensor readings
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as input and estimates a latent internal stress value \
sigma. This stress is then used to compute the stress
intensity factor AK =Y - o - ma, which is fed into
Paris’ Law to calculate crack growth rate. The resid-
ual net branch, in parallel, learns any remaining da-
ta-driven discrepancies. Both sub-networks are im-
plemented using PyTorch’s nn.Sequential modules.

Results and Analysis

Model Performance and Training Stability

At Epoch 0, average loss is 537.81, which is a high
value. This loss value sharply drops to 0.0843 by
epoch 9, indicating that the model is well-adjust-
ing the iterations. From epoch 0 to 2, loss decreases
drastically from 537.81 to 7.5516 to 1.7319. Aver-
age loss At epoch 5, average loss is 0.0413, and at
epoch 9, average loss reaches 0.7795. The training
loss decreased rapidly from 537.81 to 0.084 over 10
epochs, indicating fast and stable convergence of the
Hybrid PINN model. Overall, we can assure that the
model is capable of learning the underlying phys-
ics-based loss function, but some instability remains
in later stages of training.

Crack Growth Rate Trajectory Analysis

To interpret the result of the graph intuitively, the
Unit 3 model — with the lowest average uncertain-
ty — was selected and visualized in detail (see Fig.
7). The figure includes three plots: predicted crack
growth rate, Bayesian da/dN with uncertainty, and
inferred stress trajectory with latent uncertainty.

The predicted crack growth rate graph’s x-axis rep-
resents engine cycles, and the y-axis (blue) shows
the predicted crack growth rate da/dN in mm/cycle.

Bayesian PINN Prediction + Uncertainty Graph’s
x-axis indicates engine cycles, the left y-axis (blue)
shows the mean predicted crack growth rate da/dN
in mm/cycle, and the right y-axis (red) presents the
epistemic uncertainty as the standard deviation.

Stress Prediction and Uncertainty Graph’s x- axis
represents engine cycles, the left y-axis (blue) dis-
plays the inferred internal stress in MPa estimated
by the stress net, and the right y-axis (red) shows
the standard deviation of predicted stress as uncer-
tainty.

Unit 3 exhibits a crack growth pattern with a strong
upward trend after 80 cycles. The Bayesian uncertain-
ty again remains minimal, highlighting the predictive
confidence of the model in this unit. The latent stress
plot shows consistent high-frequency variations, but
the uncertainty is controlled, suggesting that the mod-
el remains stable despite sensor-driven disturbances.

Overall, the visualization of these top-performing
units confirms the B-PINN’s ability to not only pro-
vide accurate crack growth predictions but also offer
interpretable uncertainty quantification. This dual ca-
pability is essential for real-world deployment in fa-
tigue diagnostics of CFM56-7B engines, especially
under data-limited and sensor-noisy conditions.

[Unit 3] Predicted Crack Growth Rate

Qo008
= Predicted da/dN

LOD04

0.0002

da/dN
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0.0002

—0.06004

[ 20 %0 60 80 100
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[Unit 3] Bayesian PINN: Prediction + Uncertainty
Mean dardN I
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Figure 6: Plots for Unit 3 (predicted crack growth
rate, Bayesian da/dN with uncertainty, and inferred
stress trajectory with latent uncertainty)

Discussion

The alpha value 0.5 reflects an equal weighting be-
tween the physics-based Paris’ Law loss and the da-
ta-driven residual loss. While this allows the model
to benefit from both physical regularization and em-
pirical learning, it may not be an optimal value for the
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perfect machine learning model. In the future using
a dynamic a schedule or Bayesian optimization to
tune o during training, especially since overfitting to
noisy sensor data or underfitting physical laws may
occur at different stages of training, will be benefi-
cial for finding the exact value of the alpha.

While Monte Carlo dropout provides epistemic un-
certainty, certain cycle regions showed high pre-
dictive uncertainty, as shown in Fig. 7, potentially
due to underrepresented stress regimes in training.
Applying Bayesian ensembling or using HMC sam-
pling might result in better posterior approximation.

Another significant limitation lies in the latent stress
inference mechanism. Since true stress measure-
ments are not available in the CMAPSS dataset, the
model relies solely on sensor proxies to estimate in-
ternal stresses. This assumption introduces a mod-
eling gap—especially under complex, multiaxial
loading conditions or dynamic engine phases (e.g.,
takeoff, descent)—where sensor-stress correlation
may be nonlinear or weak. Without direct stress
calibration from test-rig data or finite element val-
idation, the inferred stress remains a best-guess ap-
proximation, which can propagate uncertainty into
the fatigue crack predictions.

A threshold value of 0.00025 inch/cycle is applied in
this study to identify the starting point of

high-risk fatigue crack growth behavior. This value is
referenced from the standard shown in ASTM E647
[5]. In practical applications, this threshold serves
as a critical limit beyond which crack propagation
is considered potentially unstable or dangerous. Al-
though the threshold provides a useful benchmark
for risk classification, it varies a lot depending on
specific operating conditions, material microstruc-
tures, or environmental influences such as tempera-
ture and load spectrum. Therefore, in future studies,
specific calibration or experimental validation might
be required for specific engine types or service sce-
narios.

While the proposed framework demonstrates strong
predictive capabilities on simulated datasets, its ap-
plicability to real-world scenarios remains unveri-
fied due to the absence of actual failure data from
CFM56-7B engines. The lack of flight records and

post-maintenance inspection reports limits our ability
to validate the model against observed crack propaga-
tion or component failure. This constraint affects the
generalizability of the results and should be consid-
ered when interpreting the findings.

Future work should incorporate operational data from
real engines to fully evaluate the model’s robustness
and diagnostic utility.

Ultimately, these refinements would enhance the
model’s applicability in real-world Structural Health
Monitoring (SHM) systems and contribute to safer,
more reliable predictive maintenance frameworks in
commercial aviation.

Conclusion

This study presents hybrid Physics-Informed Neural
Network (PINN) and Bayesian PINN (B-PINN) mode-
ling for predicting fatigue-induced crack growth in the
CFM56-7B jet engine and uncertainty of the predicted
crack growth. By applying Paris’ Law into the neural
network loss function and integrating sensor-derived
stress estimates as residual neural networks (RNN),
the model successfully integrates physical theory with
data-driven learning. The results show that the model
can accurately track crack growth trajectories, esti-
mate latent stress behavior, and provide reliable un-
certainty calculation using Bayesian inference. The
fixed threshold value (0.00025 inch/cycle) allowed
the model to clearly identify the potential risk of the
crack growth.

Looking forward, future improvements mentioned in
the Discussion part are required. These improvements
include refining the a-balancing parameter, enhanc-
ing training stability across epochs, and validating the
model against actual post-maintenance data. Deploy-
ing this PINN model in real-world SHM (Structural
Health Monitoring) systems may enable predictive
maintenance (PdM) scheduling and help prevent cata-
strophic engine failures in jet engines such as CFM56-
7B engines.

Moreover, real-world validation using post-flight
CFM56-7B engine data remains a crucial step to con-
firm the model’s generalizability and operational ac-
curacy. Adding such real-flight data would provide
essential insights on model performance under actual
service conditions and support further development
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beyond simulation-based testing.
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