Letter to Editor Open Access

Journal of Pioneering Artificial Intelligence Research

ISSN: 3069-0846

DOI: doi.org/10.63721/25JPAIR0106

Letter no. 8: Isvhaai AI Society Letters

Satish Gajawada

Iit Roorkee Alumnus, India

Citation: Satish Gajawada (2025) Letter no. 8: Isvhaai AI Society Letters J of Pion Artf Research 1(2), 1-3. WMJ/JPAIR-106

Abstract

VHAAI means Very Highly Advanced Artificial Intelligence. ISVHAAI means International Society for VHAAI. VHAAI field is used by ISVHAAI Society in an attempt to solve problems. A new algorithm titled Friendship Human Swarm Optimization (FdHSO) is designed in this Letter No. 8 of ISVHAAI AI Society Letters.

*Corresponding author: Satish Gajawada, Iit Roorkee Alumnus, India.

Submitted: 26.07.2025 **Accepted:** 29.07.2025 **Published:** 07.08.2025

Keywords: AI, VHAAI, ISVHAAI, Friendship, Swarm, Humans, Human Swarm Optimization, Friendship Human Swarm Optimization, HSO, FdHSO

Introduction

Articles to show literature related to Swarm Intelligence [1-5]. A unique algorithm titled Friendship Human Swarm Optimization (FdHSO) has been designed in this letter. The next Sections show FdHSO algorithm and Conclusions followed by references at the end.

Friendship Human Swarm Optimization

Friendship_Matrix is initialized in line no. 1. In line no. 2, friends population is initialized. Generation count is set to 0. Fitness values are calculated in line no. 4. Probability is obtained by dividing fitness value

with sum of fitness values of all friends. In line no. 7 probabilities of all friends are calculated. For each friend loop is started in line no. 8. In even Generations, friend moves along best_friend direction and magnitude of this movement is Direction_Movement*Friendship_Matrix[friend] [best_friend] multiplied by Step value. In odd Generations, friend moves along target friend T where friend T is obtained based on random number R and probabilities of friends. The magnitude of this movement is Friendship_Matrix [friend] [T] multiplied by Step value. Repeat for each friend loop is ended in line no. 20. Generation is incremented by 1. Repeat the process until termination

J.of Pion Artf Int Research Vol:1,2 Pg:1

Letter to Editor Open Access

condition is reached in line no. 22.

Procedure

Friendship Human Swarm Optimization (FdHSO)

- Initialize Friendship_Matrix
- Initialize Population of Friends
- Set generation to 0
- Calculate fitness values
- fitness_sum = Sum of fitness values of population probability = fitness / fitness sum
- Calculate probabilities of all friends
- Repeat for each friend:
- if friend in even generation:
- best friend = friend with best fitness value
- Direction Movement = (best friend friend)
- Convert Direction Movement into unit vector
- Pos = Pos + Direction_Movement*Friendship Matrix[friend][best friend]*Step
- if friend in odd generation:
- Generate Random number R
- Based on R and Probabilities select a target friend T
- Direction Movement = (T friend)
- Convert Direction Movement into unit vector
- Pos = Pos + Direction_Movement*Friendship_Matrix[friend][T]*Step
- End Repeat for each friend loop
- Increment Generation by 1
- Repeat this process until termination condition is reached

Conclusions

A new algorithm titled Friendship Human Swarm Optimization (FdHSO) is designed in this letter. There are different position update strategies for even and odd generations. In even generations friends move along best friend direction where as a different position update strategy is used for odd generations. There is scope to explore in this direction shown in this letter and design more unique Friendship Human Swarm Optimization algorithms.

References

- 1. Xu J, Xu S, Zhang L, Changshun Zhou, Ziqin Han (2023) A particle swarm optimization algorithm based on diversity-driven fusion of opposing phase selection strategies. Complex Intell Syst 9: 6611-6643.
- 2. Yang Q, Song GW, Gao XD, Zhen-Yu Lu, Sang-Woon Jeon, et al. (2023) A random elite ensemble learning swarm optimizer for high-dimensional optimization. Complex Intell Syst 9: 5467-5500.
- 3. J Hepworth, D P Baxter, A Hussein, K J Yaxley, E Debie, et al. (2021) "Human-Swarm-Teaming Transparency and Trust Architecture." in IEEE/CAA Journal of Automatica Sinica 8: 1281-1295.
- 4. Hamami MGM, Ismail ZH (2022) A Systematic Review on Particle Swarm Optimization Towards Target Search in The Swarm Robotics Domain. Arch Computat Methods

https://link.springer.com/article/10.1007/s11831-022-09819-3.

5. Hasbach JD, Bennewitz M (2021) The design of self-organizing human–swarm intelligence. Adaptive Behavior 30: 361-386.

Copyright: ©2025 Satish Gajawada. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J.of Pion Artf Int Research Vol:1,2 Pg:2