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Abstract

The nonlinear behavior of the brain's information processing represents one of the key tasks in mod-
ern neuroscience, and a lot of research has been conducted in trying to rhythmicity in brain networks.
Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any
process. Several factors must be considered, and multiple objectives must be met simultaneously. Bifur-
cation analysis and multiobjective nonlinear model predictive control (MNLMPC) calculations are per-
formed on two brain dynamic models. The MATLAB program MATCONT was used to perform the bifur-
cation analysis. The MNLMPC calculations were performed using the optimization language PYOMO
in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON.. The bifurcation
analysis Hopf bifurcation points that lead to limit cycles in the two models. These Hopf points were elim-
inated using an activation factor that involves the tanh function. The multiobjective nonlinear model pre-
dictive control calculations converge to the Utopia point in both the problems, which is the best solution.
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Background versican v2 isoform at the nodes of Ranvier in devel-
Yamaguchi showed that lecticans are organizers oping and adult mouse central nervous systems [3].
of the brain's extracellular matrix [1]. Manor et al. Bekku etal performed the molecular cloning ofbral2, a
showed that synaptic depression mediates bistability novel brain-specific link protein, and demonstrated the
in neuronal networks with recurrent inhibitory con- immunohistochemical colocalization with brevican in
nectivity [2]. Oohashi et al demonstrated that Brall, perineuronal nets [4]. Dityatev et al showed the syn-
a brain-specific link protein, colocalizes with the aptic plasticity of extracellular matrix molecules [5].
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Carulli et al. determined the composition of perineu-
ronal nets in the adult rat cerebellum and the cellular
origin of their components [6].

Rich and Wenner researched sensing and express-
ing homeostatic synaptic plasticity [7]. Dityatev et
al. investigated the activity-dependent formation and
functions of chondroitin sulfate-rich extracellular
matrix of perineuronal nets [8]. Turrigiano showed
that homeostatic signaling was the positive side of
negative feedback [9]. Xie et al. demonstrated the
existence of Hopf bifurcations in the Hodgkin-Hux-
ley model [10]. Cingolani et al. the activity-depend-
ent regulation of synaptic AMPA receptor composi-
tion and abundance by beta 3 integrins [11].

Durstewitz discussed the implications of synaptic bi-
ophysics for recurrent network dynamics and active
memory [12]. Dityatev remodeled the extracellular
matrix and epileptogenesis [13]. Kochlamazashvili
et al. that the extracellular matrix molecule hyalu-
ronic acid regulates hippocampal synaptic plasticity
by modulating postsynaptic l-type ca(2+) channels
[14]. Dityatev et al. demonstrated that the extracel-
lular matrix played a dual role in synaptic plasticity
and homeostasis [15]. Dityatev and Rusakov demon-
strated the existence of molecular signals of plastici-
ty at the tetrapartite synapse [16]. Wlodarczyk et
al. showed the role played by extracellular matrix
molecules, their receptors, and secreted proteases in
synaptic plasticity [17]. Kazantsev et al. developed
a homeostatic model of neuronal firing governed by
feedback signals from the extracellular matrix [18].

Soleman et al. investigated the targeting of the neural
extracellular matrix in neurological disorders [19].
Dembitskaya et al. Studied the effects of enzymatic
removal of chondroitin sulfates on neural excitability
and synaptic plasticity in the hippocampal CAI re-
gion [20]. Favuzzi et al. investigated the activity-de-
pendent gating of parvalbumin interneuron function
by the perineuronal net protein brevican [21]. Jercog
et al demonstrated that the cortical dynamics reflect
state transitions in a bistable network [22]. Schmidt
et al. showed that the network mechanisms cause os-
cillations in cognitive tasks [23]. Azeez et al. demon-
strated the diurnal fluctuation of extracellular matrix
organization in the lateral hypothalamus in basal
conditions and in neuroinflammation [24].

Song and Dityatev investigated the interaction be-
tween glia, extracellular matrix and neurons [25]. La-
zarevich et al. demonstrated the existence of activi-
ty-dependent switches between dynamic regimes of
extracellular matrix expression [26]. Rozhnova et al.
showed the impact of the brain extracellular matrix on
neuronal firing reliability and spike-timing jitter [27].
Rozhnova demonstrated the chaotic change of extra-
cellular matrix molecules concentration in the pres-
ence of periodically varying neuronal firing rate [28].
Rozhnova et al. performed bifurcation analysis calcu-
lations on a model of brain extracellular matrix [29].

This work aims to perform bifurcation and multi-
objective nonlinear model predictive control(MN-
LMPC) on two brain dynamics models, which are
Brain extracellular matrix model of Rozhnova et al.
and the Hodgkin-Huxley model of Xie et al. [29,10].
This document is organized as follows. The model
equations for both the models are first described. This
is followed by a description of the numerical methods
(bifurcation analysis and MNLMPC) . The results and
discussion are then presented, followed by the con-
clusions.

Brain Dynamics models
Model 1 : Brain extracellular matrix model Rozh-

nova et al. [29]

The equations in this model are

vl
2L = (@ +7,)val + B F.
dpval _
- —a, pval+ [ F,
F=z,— =4
: -0-6
1+ :
exp( 3 )
- by h
r_ -0

-0-6
1+exp( 0 £)
kP

0=0,+ Q'Q:“'.’af

(1)
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The parameter values are

o, = 5, = 023, = 0.001;ap =0.001;y, =0.001; B, =0.01;
z,=0;z, =1; p, =0; p, =1;k, =0.15;k, = 0.05; 5, =0.01

Open Access

zval and pval represent the concentration of the ECM molecules and the concentration of proteases. Gz,ﬁp

are the activation midpoints and are the bifurcation and control parameters.

Model 2: Hodgkin-Huxley model (Xie et al. (2008)[10])
The equations in this model are

(2)

d(j.;af) - CL (I — xa(mval)’ hval(vval —vna) — g (nval)* (wal —v ) — g ,(vwval —v;))
M
M =, (]_ —}?ﬂ’af) _ﬁm (}?Hﬂf)
dt
d(hval) _ a,(1—hval)— B, (hval)
dt
d(mval) _ a,(1—hval)— ,(hval)
dt
Where G!;J'.r’ m> %}’ﬂj‘f’q”ﬂ” are defined as
a, =01— 2D
] {ex (25 —VL’GIE)_]-}
P 0
wal
= 4 -
ﬁ}ﬂ eXp( 18 )
vval
=0.07 R
a, exp( 20 )
1 (3)
ﬁ;; = {ex (30_1,".’01?)_’_1}
P
_ 0.01(10—vval)
n = 10—wval
-1
{exp( 0 )—1}
wal
ﬁrr eXp( 20 )

The parameters are

v, =1150 ,V, =-12.0, ¥, =10.599, g, =120.0,g, =36 ,g, =0.3,C,, =1

vval is the electrical potential difference voltage across the nerve membrane (membrane potential). mval and
hval represent the gating variables for the activation and inactivation of the sodium ion channel, respectively.

nval is the activation gating variable of the potassium ion channel. Iy, is the external current and the bifur-

cation and control parameter.
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Numerical Procedures

Bifurcation Analysis

The MATLAB software MATCONT is used to per-
form the bifurcation calculations. Bifurcation analy-
sis deals with multiple steady-states and limit cycles.
Multiple steady states occur because of the existence
of branch and limit points. Hopf bifurcation points
cause limit cycles . A commonly used MATLAB
program that locates limit points, branch points, and
Hopf bifurcation points is MATCONT [30,31]. This
program detects Limit points (LP), branch points
(BP), and Hopf bifurcation points(H) for an ODE
system

dx
” =f(x,a) )

x € R" Let the bifurcation parameter be @ Since
the gradient is orthogonal to the tangent vector,

The tangent plane at any point

w=[w, Wy, Wy, W,,... W

i+

] must satisfy Aw=0 (4
Where A is

A=[of /ox |6f /o] 5)

where 9f /0% is the Jacobian matrix. For both lim-

it and branch points, the matrix [9f /] must be
singular. The n+1 th component of the tangent vec-

w

tor n+1 = 0 for a limit point (LP)and for a branch

point (BP) the matrix

A
{ T} must be singular. At a
Hopf bifurcation point, W

det(2f, (x,a)@1,)=0 (6)

@ indicates the bialternate product while 7 is the
n-square identity matrix. Hopf bifurcations cause
limit cycles and should be eliminated because limit
cycles make optimization and control tasks very dif-
ficult. More details can be found in Kuznetsov and
Govaerts [32-34].

Hopf bifurcations cause unwanted oscillatory be-
havior and limit cycles. The tanh activation function

(where a control value u is replaced by ) (u# tanhu / &)
is commonly used in neural nets and optimal control
problems to eliminate spikes in the optimal control
profile. Hopf bifurcation points cause oscillatory
behavior [35-38]. Oscillations are similar to spikes,
and the results in demonstrate that the tanh factor
also eliminates the Hopf bifurcation by preventing
the occurrence of oscillations [39]. Sridhar explained
with several examples how the activation factor
involving the tanh function successfully eliminates
the limit cycle causing Hopf bifurcation points [39].
This was because the tanh function increases the time
period of the oscillatory behavior, which occurs in the
form of a limit cycle caused by Hopf bifurcations.

Multiobjective Nonlinear Model Predictive
Control (MNLMPC)

Flores Tlacuahuaz et al. developed a multiobjective
nonlinear model predictive control (MNLMPC)
method that is rigorous and does not involve weighting
functions or additional constraints [40]. This procedure

is used for pnerforming the MNLMPC calculations

Here 3 g¢,(t,) (=12.n) represents the variables that

need to be minimized/maximized simultaneously for
a problem involving a set of ODE

ﬁ=F(x,u)

dt (7)

Ly being the final time value, and n the total number of
objective variables and . u the control parameter. This
MNLMPC procedure first solves the single objective
optimal control problem independently optimizing
'y T

Z q,) individually. The

T

=0

each of the variables

fi=ts
minimization/maximization of 2, ;)

i

will lead to the values q; Then the optimization
problem that will be solved is

" =ty

min(z > q,t)-q;)*

dx
subject to — = F(x.u);
J 2 (x.u)

(8)
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This will provide the values of u at various times.
The first obtained control value of u is implemented
and the rest are discarded. This procedure is repeated
until the implemented and the first obtained control
values are the same or if the Utopia point where

ti=ty

( 2. 4,(t)=g; forallj) is obtained. Pyomo is used
tigp

for these calculations. Here, the differential equa-
tions are converted to a Nonlinear Program (NLP)
using the orthogonal collocation method The NLP is
solved using IPOPT and confirmed as a global solu-
tion with BARON [41-43].

The steps of the algorithm are as follows

=ty

1. Optimize Z q,(t) and obtain 9 at various
Tiud

time intervals ti. The subscript i is the index for

each time step.
n 3'.-'={r'

QS a,@)-a)y

2. Minimize = &y

trol values for various times.

Implement the first obtained control values

4. Repeat steps 1 to 3 until there is an insignificant
difference between the implemented and the first
obtained value of the control variables or if the
Utopia point is achieved. The Utopia point is

ti=ty

when 2 ¢,(t)=gq; forallj.
fip

and get the con-

(98]

Results and Discussion

For the bifurcation analysis in model I, &, both and
@ were individually used as bifurcation parameters.
When % was used as a bifurcation parameter, two
Hopf bifurcation points were found at (val, pval. 6,)
values of ( 2.128943 0.426793 5.645178 ) and (
4.230053 1.696697 6.052311 ). These Hopf bifurca-

tion points are shown in Figure 1a

2

pal

" 55
thetap

Figure 1a
Each of these Hopf bifurcation points result in a limit
cycle which are shown in figures 1b and lc.
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. 6, tanh(&,)
When €, was modified to - the hopf
bifurcations disappear (Figure 1d).
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8
4
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Figure 1d

When € was used as a bifurcation parameter, two
Hopf bifurcation points were found at (zval. pval.6.)
values of ( 2.696435 0.266904 5.951550 ) and (
3.1905892.102711 5.604739 ) These Hopf bifurcation
points are shown in Figure le.
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S The MNLMPC calculations were performed
using 9, anh(8,) \ng G tanh(8) 46 the control
) 1.115 1.115
o — H\"“""H\E__f__ parameters. = (ECM concentration) was
?oas T S > zval (t,)

maximized and resulted in a value of 20. Ii pval (1)
Figure 1e ; o

) ] ] ] .. (proteas concentration) was minimized and
Each of these Hopf bifurcation points result in a limit

cycle which are shown in figures Ifand Ig. resulted in a value of 0. The multiobjective optimal

control calculation involved a minimization of

1=t 1=t

(> zval (1) -20)" +(D pval (1) - 0)°
fiw fao . This

minimization resulted in the Utopia point (0). The

first of the control variables is implemented, and the

rest are discarded. The process is repeated until the

difference between the first and second values of the

s e control variables are the same. The MNLMPC control
Figure 1f values of both €, and € were 5 and 5. The zval and
pval profiles are shown in Figures 1i and 1j.
10
— zyval
9 4
B 4
3185 o0 71
zval stes thetaz 6
Figure 1g 5 |
6. tanh(6.) : : : : ST
. _— 0 20000 40000 60000 80000 100000
When € was modified to  1.115 the hopf t
bifurcations disappear (Figure 1h). Figures 1i
Figure 1h Figures 1j
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In model 2, I, is the bifurcation parameter and a  yya5 used as the control parameter.
Hopf bifurcation point was found at
(vval, mval, hval, nval, 2, [, ) values of ( 5.345857

0.097257 0.406228 0.401784 9.779639 ). This is o1
shown in Figure 2a.

0.12
0.11
.1
§ 0.09
0.08
0.07
0.06
Figure 2¢
15

This minimization resulted in the Utopia point (0).
The first of the control variables is implemented, and
Figure 2a. the rest are discarded. The process is repeated until the
difference between the first and second values of the
control variables are the same. The MNLMPC control
value of is 1. The vval, hval and nval profiles for the
MNLMPC calculations are shown in figures 2d and
2e. The mval value was 1 throughout.

hﬁ““ﬂﬂﬂﬂh_

The limit cycle produced by this Hopf bifurcation is
shown in Figure 2b.

Figure 2b
I, tanh(Z,) ’
When I, is modified to = 5~ the Hopf u v v
Bifurcation point disappears. L L L i M
For the MNLMPC calculations, . '
v, b=, i, Figure 2d
> vval (). mval (t,). > nval (t,) " —

were maximized and resulted in values of 20,20 and

1=t

17.3647. 2 val (t,).

was minimized and resulted in a value of 0.
The multiobjective optimal control calculation
involved a minimization of

(Z vval (1) —20)° + (Z mval (t,) — 20)*
oo | A +

(3 mval () -17.3647) + (> hval (1,) - 0)° 3 0 = w0 %0 %o
Figure 2e
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Both brain models show the presence of limit cycles
causing Hopf bifurcations, which can be eliminated
using the activation factor involving the tanh
function, confirming the analysis of Sridhar(2024).
In both cases, the MNLMPC calculations converge
to the Utopia solution.

Conclusions

Multiobjective nonlinear model predictive control
calculations were performed along with bifurcation
analysis on two models involving brain dynamics.
The bifurcation analysis revealed the existence of
limit cycle causing Hopf bifurcation points, which
are eliminated using an activation factor involving
the tanh function. The multiojective nonlinear model
predictive calculations converge to the Utopia point(
the best possible solution) .in both models.
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