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Abstract

The nonlinear behavior of the brain's information processing represents one of the key tasks in mod-
ern neuroscience, and a lot of research has been conducted in trying to rhythmicity in brain networks. 
Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any 
process. Several factors must be considered, and multiple objectives must be met simultaneously. Bifur-
cation analysis and multiobjective nonlinear model predictive control (MNLMPC) calculations are per-
formed on two brain dynamic models. The MATLAB program MATCONT was used to perform the bifur-
cation analysis. The MNLMPC calculations were performed using the optimization language PYOMO 
in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON.. The bifurcation 
analysis Hopf bifurcation points that lead to limit cycles in the two models. These Hopf points were elim-
inated using an activation factor that involves the tanh function. The multiobjective nonlinear model pre-
dictive control calculations converge to the Utopia point in both the problems, which is the best solution.  
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Background
Yamaguchi showed that lecticans are organizers 
of the brain's extracellular matrix [1]. Manor et al. 
showed that synaptic depression mediates bistability 
in neuronal networks with recurrent inhibitory con-
nectivity [2]. Oohashi et al demonstrated that Bral1, 
a brain-specific link protein, colocalizes with the

versican v2 isoform at the nodes of Ranvier in devel-
oping and adult mouse central nervous systems [3]. 
Bekku et al performed the molecular cloning of bral2, a 
novel brain-specific link protein, and demonstrated the 
immunohistochemical colocalization with brevican in 
perineuronal nets [4]. Dityatev et al showed the syn-
aptic plasticity of extracellular matrix molecules [5].
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Carulli et al. determined the composition of perineu-
ronal nets in the adult rat cerebellum and the cellular 
origin of their components [6]. 

Rich and Wenner researched sensing and express-
ing homeostatic synaptic plasticity [7]. Dityatev et 
al. investigated the activity-dependent formation and 
functions of chondroitin sulfate-rich extracellular 
matrix of perineuronal nets [8]. Turrigiano showed 
that homeostatic signaling was the positive side of 
negative feedback [9]. Xie et al. demonstrated the 
existence of Hopf bifurcations in the Hodgkin-Hux-
ley model [10]. Cingolani et al. the activity-depend-
ent regulation of synaptic AMPA receptor composi-
tion and abundance by beta 3 integrins [11]. 

Durstewitz discussed the implications of synaptic bi-
ophysics for recurrent network dynamics and active 
memory [12]. Dityatev remodeled the extracellular 
matrix and epileptogenesis [13]. Kochlamazashvili 
et al. that the extracellular matrix molecule hyalu-
ronic acid regulates hippocampal synaptic plasticity 
by modulating postsynaptic l-type ca(2+) channels 
[14]. Dityatev et al. demonstrated that the extracel-
lular matrix played a dual role in synaptic plasticity 
and homeostasis [15]. Dityatev and Rusakov demon-
strated the existence of molecular signals of plastici-
ty at the tetrapartite synapse [16]. Wlodarczyk et 
al. showed the role played by extracellular matrix 
molecules, their receptors, and secreted proteases in 
synaptic plasticity [17]. Kazantsev et al. developed 
a homeostatic model of neuronal firing governed by 
feedback signals from the extracellular matrix [18]. 

Soleman et al. investigated the targeting of the neural 
extracellular matrix in neurological disorders [19]. 
Dembitskaya et al. Studied the effects of enzymatic 
removal of chondroitin sulfates on neural excitability 
and synaptic plasticity in the hippocampal CA1 re-
gion [20]. Favuzzi et al. investigated the activity-de-
pendent gating of parvalbumin interneuron function 
by the perineuronal net protein brevican [21]. Jercog 
et al demonstrated that the cortical dynamics reflect 
state transitions in a bistable network [22]. Schmidt 
et al. showed that the network mechanisms cause os-
cillations in cognitive tasks [23]. Azeez et al. demon-
strated the diurnal fluctuation of extracellular matrix 
organization in the lateral hypothalamus in basal 
conditions and in neuroinflammation [24].

Song and Dityatev investigated the interaction be-
tween glia, extracellular matrix and neurons [25]. La-
zarevich et al. demonstrated the existence of activi-
ty-dependent switches between dynamic regimes of 
extracellular matrix expression [26]. Rozhnova et al. 
showed the impact of the brain extracellular matrix on 
neuronal firing reliability and spike-timing jitter [27]. 
Rozhnova demonstrated the chaotic change of extra-
cellular matrix molecules concentration in the pres-
ence of periodically varying neuronal firing rate [28]. 
Rozhnova et al. performed bifurcation analysis calcu-
lations on a model of brain extracellular matrix [29]. 

This work aims to perform bifurcation and multi-
objective nonlinear model predictive control(MN-
LMPC) on two brain dynamics models, which are 
Brain extracellular matrix model of Rozhnova et al. 
and the Hodgkin-Huxley model of Xie et al. [29,10]. 
This document is organized as follows. The model 
equations for both the models are first described. This 
is followed by a description of the numerical methods 
(bifurcation analysis and MNLMPC) . The results and 
discussion are then presented, followed by the con-
clusions. 

Brain Dynamics models
Model 1 : Brain extracellular matrix model Rozh-
nova et al. [29]

The equations in this model are 

                                 
                                    (1)
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The parameter values are
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zval and pval represent the concentration of the ECM molecules and the concentration of proteases. ,z pθ θ    
are the activation midpoints and are the bifurcation and control parameters.

Model 2: Hodgkin-Huxley model (Xie et al. (2008)[10])
The equations in this model are 

                    

The parameters are 
 115.0 , 12.0 ,  10.599, 120.0, 36 , 0.3, 1Na K L Na K L MV V V g g g C= = − = = = = =  
vval is the electrical potential difference voltage across the nerve membrane (membrane potential). mval and 
hval represent the gating variables for the activation and inactivation of the sodium ion channel, respectively. 

nval is the activation gating variable of the potassium ion channel. EXTI    is the external current and the bifur-
cation and control parameter. 
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Numerical Procedures 
Bifurcation Analysis 
The MATLAB software MATCONT is used to per-
form the bifurcation calculations. Bifurcation analy-
sis deals with multiple steady-states and limit cycles. 
Multiple steady states occur because of the existence 
of branch and limit points. Hopf bifurcation points 
cause limit cycles . A commonly used MATLAB 
program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT [30,31]. This 
program detects Limit points (LP), branch points 
(BP), and Hopf bifurcation points(H) for an ODE 
system 

                     ( , )dx f x
dt

α=
             (3)

nx R∈  Let the bifurcation parameter be  a Since 
the gradient is orthogonal to the tangent vector,

The tangent plane at any point 

1 2 3 4 1[ , , , ,.... ]nw w w w w w +=   must satisfy 0Aw =    (4)

Where A is

           [ / | / ]A f x f α= ∂ ∂ ∂ ∂               (5)

where /f x∂ ∂   is the Jacobian matrix. For both lim-
it and branch points, the matrix  [ / ]f x∂ ∂  must be 
singular. The n+1 th component of the tangent vec-

tor   1nw +  = 0 for a limit point (LP)and for a branch 

point (BP) the matrix  T

A
w
 
 
 

 must be singular. At a 
Hopf bifurcation point,

              det(2 ( , )@ ) 0x nf x Iα =              (6)

@ indicates the bialternate product while  nI  is the 
n-square identity matrix. Hopf bifurcations cause 
limit cycles and should be eliminated because limit 
cycles make optimization and control tasks very dif-
ficult. More details can be found in Kuznetsov and 
Govaerts [32-34].

Hopf bifurcations cause unwanted oscillatory be-
havior and limit cycles. The tanh activation function

(where a control value u is replaced by ) ( tanh / )u u ε   
is commonly used in neural nets and optimal control 
problems to eliminate spikes in the optimal control 
profile. Hopf bifurcation points cause oscillatory 
behavior [35-38]. Oscillations are similar to spikes, 
and the results in demonstrate that the tanh factor 
also eliminates the Hopf bifurcation by preventing 
the occurrence of oscillations [39]. Sridhar  explained 
with several examples how the activation factor 
involving the tanh function successfully eliminates 
the limit cycle causing Hopf bifurcation points [39]. 
This was because the tanh function increases the time 
period of the oscillatory behavior, which occurs in the 
form of a limit cycle caused by Hopf bifurcations. 

Multiobjective Nonlinear Model Predictive 
Control (MNLMPC) 
Flores Tlacuahuaz et al. developed a multiobjective 
nonlinear model predictive control (MNLMPC) 
method that is rigorous and does not involve weighting 
functions or additional constraints [40]. This procedure 
is used for performing the MNLMPC calculations 

Here  represents the variables that 

need to be minimized/maximized simultaneously for 
a problem involving a set of ODE

                    ( , )dx F x u
dt

=
                 (7)

ft  being the final time value, and n the total number of 
objective variables and . u the control parameter. This 
MNLMPC procedure first solves the single objective 
optimal control problem independently optimizing 

each of the variables   individually. The 

minimization/maximization of 
 

will lead to the values *
jq  Then the optimization 

problem that will be solved is

       (8)
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This will provide the values of u at various times. 
The first obtained control value of u is implemented 
and the rest are discarded. This procedure is repeated 
until the implemented and the first obtained control 
values are the same or if the Utopia point where

 is obtained. Pyomo is used 

for these calculations. Here, the differential equa-
tions are converted to a Nonlinear Program (NLP) 
using the orthogonal collocation method The NLP is 
solved using IPOPT and confirmed as a global solu-
tion with BARON [41-43]. 
 The steps of the algorithm are as follows 

1.	 Optimize   and obtain  
*
jq  at various 

time intervals ti. The subscript i is the index for 
each time step.

2.	 Minimize  and get the con-
trol values for various times.

3.	 Implement the first obtained control values
4.	 Repeat steps 1 to 3 until there is an insignificant 

difference between the implemented and the first 
obtained value of the control variables or if the 
Utopia point is achieved. The Utopia point is 

when

Results and Discussion
For the bifurcation analysis in model 1, both   and  

 were individually used as bifurcation parameters. 
When   was used as a bifurcation parameter, two 
Hopf bifurcation points were found at   
values of ( 2.128943 0.426793 5.645178 ) and ( 
4.230053 1.696697 6.052311 ). These Hopf bifurca-
tion points are shown in Figure 1a

Figure 1a
Each of these Hopf bifurcation points result in a limit 
cycle which are shown in figures 1b and 1c.

 
Figure 1b

Figure 1c

When   was modified to   the hopf 
bifurcations disappear (Figure 1d).

Figure 1d

When   was used as a bifurcation parameter, two 
Hopf bifurcation points were found at   
values of ( 2.696435 0.266904 5.951550 ) and ( 
3.190589 2.102711 5.604739 ) These Hopf bifurcation 
points are shown in Figure 1e.
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Figure 1e

Each of these Hopf bifurcation points result in a limit 
cycle which are shown in figures 1f and 1g.

Figure 1f

Figure 1g

When   was modified to    the hopf 
bifurcations disappear (Figure 1h).

Figure 1h

The MNLMPC calculations were performed 

using  and   as the control 

parameters.  (ECM concentration) was 

maximized and resulted in a value of 20.   

(proteas concentration) was minimized and 

resulted in a value of 0. The multiobjective optimal 

control calculation involved a minimization of

   . This 
minimization resulted in the Utopia point (0). The 
first of the control variables is implemented, and the 
rest are discarded. The process is repeated until the 
difference between the first and second values of the 
control variables are the same. The MNLMPC control 
values of both   and   were 5 and 5. The zval and 
pval profiles are shown in Figures 1i and 1j. 

Figures 1i

Figures 1j
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In model 2,   is the bifurcation parameter and a 
Hopf bifurcation point was found at   
(vval, mval, hval, nval, 2,  ) values of ( 5.345857 
0.097257 0.406228 0.401784 9.779639 ). This is 
shown in Figure 2a. 

Figure 2a. 

The limit cycle produced by this Hopf bifurcation is 
shown in Figure 2b.

Figure 2b

When   is modified to   the Hopf 
Bifurcation point disappears. 
For the MNLMPC calculations, 

 
were maximized and resulted in values of 20,20 and 

17.3647.  

was minimized and resulted in a value of 0. 
The multiobjective optimal control calculation 
involved a minimization of

    +

                was used as the control parameter.

This minimization resulted in the Utopia point (0). 
The first of the control variables is implemented, and 
the rest are discarded. The process is repeated until the 
difference between the first and second values of the 
control variables are the same. The MNLMPC control 
value of   is 1. The vval, hval and nval profiles for the 
MNLMPC calculations are shown in figures 2d and 
2e. The mval value was 1 throughout. 

Figure 2d

Figure 2e

Figure 2c
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Both brain models show the presence of limit cycles 
causing Hopf bifurcations, which can be eliminated 
using the activation factor involving the tanh 
function, confirming the analysis of Sridhar(2024). 
In both cases, the MNLMPC calculations converge 
to the Utopia solution. 

Conclusions 
Multiobjective nonlinear model predictive control 
calculations were performed along with bifurcation 
analysis on two models involving brain dynamics. 
The bifurcation analysis revealed the existence of 
limit cycle causing Hopf bifurcation points, which 
are eliminated using an activation factor involving 
the tanh function. The multiojective nonlinear model 
predictive calculations converge to the Utopia point( 
the best possible solution) .in both models. 
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