

An Update on the Manner Adenylyl Cyclases (ACS) Might be the Therapeutic Targets Regarding Neurodegenerative Diseases (NDD) Treatment: A Review

Kulvinder Kochar Kaur^{1*}, Gautam Nand Allahbadia² and Mandeep Singh³

¹Obstt & Gynae, specialist reproductive endocrinology & Infertility specialist, Punjab, India

²Obstt & Gynae, Ex-Rotunda-A Centre for Human Reproduction Mumbai, India

³Consultant Neurologist Swami Satyanand Hospital, Punjab, India

Citation: Kulvinder Kochar Kaur, Gautam Nand Allahbadia and Mandeep Singh (2025)
An Update on the Manner Adenylyl Cyclases (ACS) Might Be the Therapeutic Targets Regarding Neurodegenerative Diseases (NDD) Treatment: A Review
J of Adv Clin Neu Res 1(2), 01-29. WMJ/JACNR-110

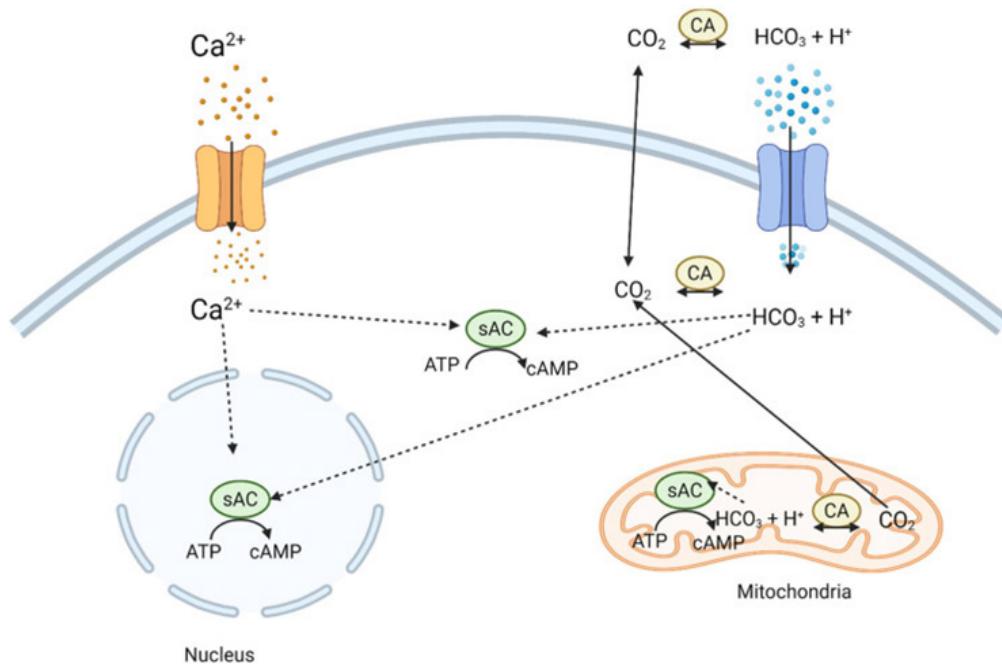
Abstract

Adenylyl cyclases (ACs) represent vital governors of cyclic adenosine monophosphate (cAMP) signaling—a pathway pivotal i) for neuroregeneration, ii) synaptic plasticity, as well as iii) neuronal survival. In both the central nervous system (CNS), in addition to peripheral nervous system (PNS), damage stimulated, activation of ACs facilitates axonal outgrowth in addition to working rectification via the stimulation i) of protein kinase A (PKA), ii) exchange proteins directly activated by cAMP (Epac), along with iii) cAMP-response element-binding protein (CREB). Of the variable AC isoforms, calcium-sensitive AC1, AC8, as well as AC5, in addition to bicarbonate-reactive soluble AC (sAC), have advented in the form of crucial modulators of neuroplasticity along with xon regeneration. Such isoforms alignment causes diverse cellular reactions—inclusive of i) gene transcription, ii) cytoskeletal remodeling, as well as iii) neurotransmitter liberation to i) metabolic, ii) synaptic, in addition to iii) damage correlated signals. Decontrolling of AC action has been involved in the pathophysiology of neurodegenerative diseases (NDD), for instance i) Parkinson's disease (PD), ii) Alzheimer's disease (AD), along with iii) amyotrophic lateral sclerosis (ALS), Huntingtons disease (HD) in addition to, iv) in chronic pain syndromes. Pharmacological manipulation of cAMP quantities via AC activation, phosphodiesterase (PDE) hampering, or pituitary adenylyl cyclase-activating polypeptide (PACAP) receptor signaling has demonstrated therapeutic attraction in preclinical models by i) escalating neurogenesis, ii) remyelination, in addition to iii) synaptic healing. On the other hand, targeted hampering of particular AC isoforms, specifically AC1, has illustrated effectiveness in diminishing maladaptive plasticity as well as neuropathic pain. This review emphasizes the variability in parts of ACs in neuronal working along with damage reactions as well as details genesis of approaches regarding their therapeutic targeting after earlier detailing PD, AD, ALS, HD regarding their association with Gut Microbiota & Bile Acids (BA). among the elderly population in the community.

***Corresponding author:** Kulvinder Kochar Kaur, Obstt & Gynae, specialist reproductive endocrinology & Infertility specialist, Punjab, India.

Keywords: Adenylyl Cyclases (Acs), Cyclic Adenosine Monophosphate (cAMP), Signalling, Neurodegenerative Diseases (NDD)

Introduction to Cyclic Adenosine Monophosphate (cAMP)-Dependent Signaling in Nerve Regeneration


Nerve regeneration is a critical biological event with intense repercussions in reference to the rectification of working subsequent to inherent damage to the nervous system. Whereas the peripheral nervous system (PNS) illustrates a pronounced capability for self-healing, regeneration in the central nervous system (CNS) is considerably restricted. Such variation takes place secondary to i) both inherent neuronal factors as well as the ii) extrinsic hampering milieu in the CNS. Getting insight regarding existence of such mechanistic modes is imperative for generating therapeutic approaches with objective at facilitating neuroregeneration, particularly in cases of i) traumatic brain damage, ii) spinal cord damage, or iii) neurodegenerative disease (NDDs). At the cellular extent, the failure of CNS neurons to regenerate is partially owing to the existence of hampering molecules for instance i) Nogo-A, ii) myelin-associated glycoprotein (MAG), along with iii) oligodendrocyte-myelin glycoprotein (OMgp), in addition to the generation of a glial scar abundant in chondroitin sulfate proteoglycans (CSPGs), that taken together impede axonal enlargement [1].

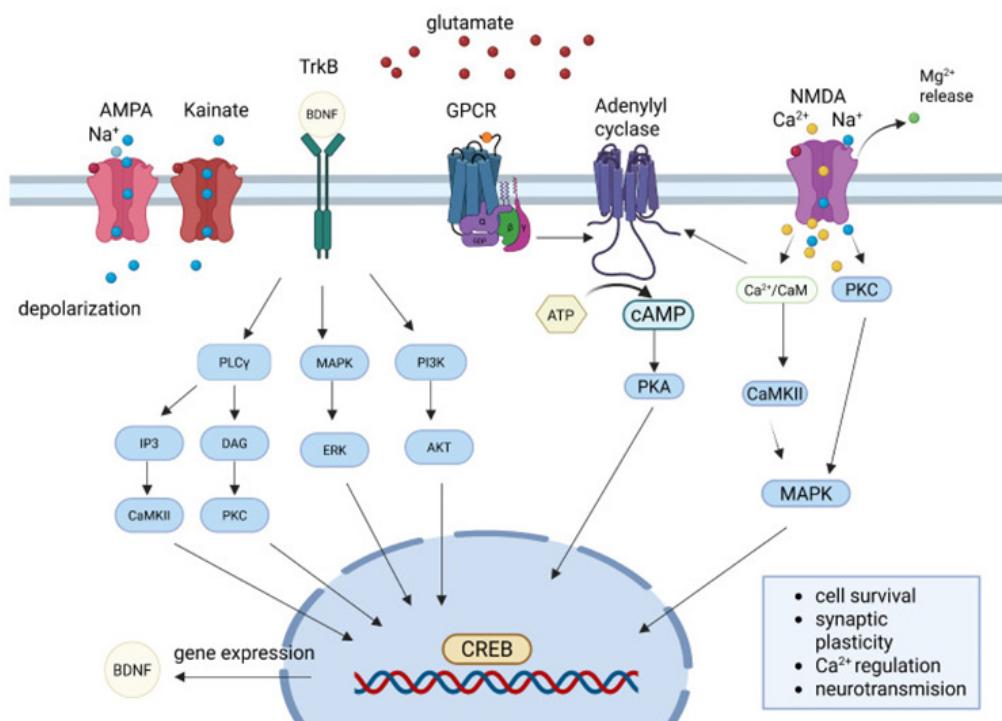
Nevertheless, the incapacity of mature CNS neurons to activate an inherent growth program further possesses a central part. Conversely, peripheral neurons react to damage with the i) upregulation of regeneration-associated genes as well as ii) activation of signaling pathways that embrace axonal outgrowth, inclusive of the 3',5'-cyclic adenosine monophosphate (cAMP) signaling to series. The cAMP pathway is one of the maximum substantially assessed intracellular signaling pathways implicated in axon regeneration. It possesses a pivotal part in translating damage signals into a regenerative reaction. Subsequent to neuronal damage, escalated cAMP quantities get found in peripheral neurons, where they correlate with escalated i) axonal lengthening, ii) branching, as well as iii) target reinnervation. Such regenerative actions of cAMP are basically modulated via i) activation

of the protein kinase A (PKA), ii) that phosphorylates transcription factors hampering for instance i) the cAMP-response element-binding protein (CREB), resulting in transcription of regeneration-correlated genes [2,3]. In empirical models, contrived escalating cAMP quantities in CNS neurons has been illustrated to partially tackle their regenerative failure. Such actions got attained either by i) direct implementation of cAMP analogs for instance dibutyryl-cAMP or via ii) pharmacological hampering of phosphodiesterases (PDEs), which degrade cAMP. For example, delivery of rolipram, a phosphodiesterase 4 (PDE4) hampering agent, leads to maintained cAMP signaling as well as has been correlated with improvements in axon re-growth as well as working rectification subsequent to spinal cord damage [4].

Additionally, cAMP works synergistically with neurotrophic factors for instance the i) brain-derived neurotrophic factor (BDNF) in addition to ii) nerve growth factor (NGF), escalating their actions on axon expansion, along with survival. cAMP signaling further impacts cytoskeletal remodeling, growth cone dynamics, in addition to the expression of integrins—pivotal constituents in axonal guidance, along with substrate crosstalk. Further than PKA, exchange proteins get directly activated by cAMP (Epac), that modulate small GTPases for instance Rap1 as well as Rac1, further assisting in axon lengthening, in addition to balance trajectory growth. Such sophisticated downstream signaling accounts for cAMP to an aligned regenerative reaction that incorporates metabolic, structural, gene expression alterations [5,6]. Significantly, the source of as well as controlling of cAMP amongst neurons are intricately regulated by adenylyl cyclases (ACs)—enzymes that catalyze the transformation of adenosine triphosphate (ATP) into cAMP. In mammals, nine membrane-bound AC isoforms (AC1–AC9) in addition to one soluble isoform (sAC or AC10) are acknowledged. Every isoform document unique controlling characteristic in addition to escalating tissue organizations, along with pronouncedly expressed in the nervous system. Noticeably, calcium/calmodulin-sensitive isoforms, for

instance AC1 as well as AC8, are activated in reaction to neuronal action in addition to possess a significant pivotal part in synaptic plasticity, along with memory generation. Their implications in activity- based cAMP enables them in the form of promising targets for escalating neuroregeneration in a damage - reactive fashion [7,8]. The soluble adenylyl cyclase, that is activated by bicarbonate as well as intracellular pH alterations, has launched in the form of a plausible metabolic sensor amongst neurons (Figure 1) [rev in 9].

Figure1: Courtesy ref no-9-Diagram illustrating the key regulatory and activation mechanisms of soluble adenylyl cyclase (sAC) in a eukaryotic cell. sAC, located in the cytosol, nucleus, and mitochondrial matrix, is activated by calcium ions (Ca^{2+}) and bicarbonate (HCO_3^-). The influx of Ca^{2+} stimulates sAC in the cytosol and nucleus to produce cAMP from ATP. Bicarbonate, generated from carbon dioxide (CO_2) by carbonic anhydrase (CA) or transported into the cell, activates sAC in the cytosol and mitochondria. In the nucleus, sAC-dependent cAMP can regulate transcription, while in the mitochondria, it influences metabolism and mitochondrial dynamics. Created in BioRender. Tomczak, J. (2025) <https://BioRender.com/mt2mtgo>.


Its activity associated cellular energy state to cAMP generation in addition to downstream signaling, yield variable mechanistic modes by which metabolic stress or damage - stimulated alterations in intracellular situations possess the capacity of affecting regeneration. Addition of a further layer of complicated nature as well as plausibility for therapeutic targeting, in the form of manipulation of sAC possesses the capability of plausibility of escalating regeneration by synchronizing energy metabolism with growth- facilitating signaling series. Further corroboration for the part of cAMP in regeneration stems from studies where utilization of acquired disfigurement models, where an earlier damage to the peripheral branch of a dorsal root ganglion (DRG) neuron escalates the capability of its central branch to regenerate amongst the spinal cord [10,11]. Such occurrence is correlated with a sustained escalation in cAMP quantities as well as upregulation of regeneration- correlated genes, buttressing the central part of the cAMP pathway in beginning in addition to sustenance of a growth proficiency - state. Although such advancements have taken place, successful translation of cAMP- dependent therapies into clinical practice continues to be bothersome in view of variable concerns for instance transient actions, ii) absence of isoform specificity, along with iii) plausible inimical sequelae of systemic cAMP escalation. Thereby, future research needs to be escalatingly concentrated on targeting particular AC isoforms that possess enrichment in neurons as well as activated under regenerative situations. Getting insight into the manner every AC isoform assist in regeneration, both in case of normal in addition to pathological situations, would be crucial to fashion exactitude, along with efficacious therapies [7,12].

Earlier we reviewed etiopathogenesis of Amyotrophic Lateral Sclerosis with specific emphasis on Gut Microbiota (GM) enteric nervous system (ENS) and associated crosstalk of astrocytes, GM, Muscle with mitochondrial melatonergic pathway, part of Iridoids. (Monotepenes) and Other natural products for development of potential therapies in alzheimer's disease, part of dietary fatty acids and GM development of neurodegenerative diseases (NDD). Role of Bile Acids in Neurological Functions and NDD development, role of mitochondrial transport in etiopathogenesis & management of various CNS diseases, neurodegenerative diseases, immunometabolic diseases, cancer, viral infections, Brain organoids controversy regarding the COVID19 Infection causing Neurodegeneration ,new Parkinson's disease or its acceleration remains unresolved, Role of CD4+T Helper Cells as Mediators of Inflammation in the Pathophysiology of Multiple Sclerosis[13-20].Here we have attempted to highlight Role of ACs in management of various NDD.

Adenyllyl Cyclase in Neuroplasticity

Neuroplasticity, the brain's capacity of modifications of its structure as well as working in reaction to damage encountered, or disease, is an elemental characteristic that lies beneath i) learning, ii) memory, iii) sensory transformation, in addition to iv) rectification from neural damage [21]. Such events take place at plethora of magnitudes, varying from molecular along with synaptic alterations to large-scale cortical redistribution [22]. One of the pivotal mechanistic modes of neuroplasticity is i) synaptic plasticity, that pointed to the capability of synapses to reinforce or escalate inimicality with time in reaction to activity. Synaptic plasticity is widely categorized into i) short-term as well as ii) long-term plasticity. I)Short-term plasticity implicates transient modifications in synaptic buttressing, canonically staying milliseconds to minutes, in addition to is mainly modulated by alterations in presynaptic neurotransmitter liberation. Conversely, long-term plasticity, for instance long-term potentiation (LTP) along with long-term depression (LTD), results in persistent modifications in synaptic efficacy, as well as is believed to be the cellular ground of learning, memory, in addition to encounter-based adjustment [23]. LTP definitions portray perpetual escalation in synaptic buttress subsequent to high-frequency triggering of presynaptic neurons. Such occurrence has been substantially assessed in pivotal brain site for instance the i) hippocampus, ii) anterior cingulate cortex (ACC), in addition to the, iii) amygdala [24]. The stimulation of LTP needs calcium influx, that takes place basically via N-methylD-aspartate (NMDA) receptors, along with in certain cases, via L-type voltage-gated calcium channels (L-VDCCs) [25]. The escalation in intracellular calcium triggers a series of molecular processes that results in synaptic buttressing, inclusive of activation of calcium/calmodulin (CaM)- based signaling pathways enrollment, of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptors (AMPARs) to the synaptic membrane, as well as structural manipulation of dendritic spines [26].

At the molecular extent, long-term synaptic plasticity is controlled by complicated nature intracellular signaling pathways which translate synaptic activity into enduring working as well as structural alterations. One of the crucial signaling molecules in such event is cAMP, ii) a second messenger which possesses a pivotal part in activity- based neuronal modifications (Figure 2).

Figure2: Courtesy ref no-9--cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) signaling pathways involved in synaptic plasticity. Synaptic activity triggered by glutamate release activates ionotropic receptors-AMPA (α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), NMDA (N-methyl-D-aspartate), and kainate-as well as GPCRs (G-protein-coupled receptors), leading to membrane depolarization and calcium ion (Ca^{2+}) influx. GPCR stimulation enhances cAMP production via adenylyl cyclase (AC), activating PKA, which phosphorylates CREB. In parallel, BDNF binding to tropomyosin receptor kinase B (TrkB) receptors activates mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinases (PI3K)/AKT, and phospholipase C gamma (PLC γ) pathways, which also converge on CREB. Activated CREB drives transcription of genes essential for synaptic plasticity, including BDNF itself. These signaling cascades regulate key processes such as synapse strengthening, calcium homeostasis, neurotransmission and neuronal survival. Created in BioRender. Tomczak, J. (2025) <https://BioRender.com/mt2mtgo>.

cAMP in addition to its downstream effector, CREB, possesses pivotal part in synaptic plasticity, i) especially in the generation, along with ii) sustenance of LTP, an elemental mechanistic mode that lies beneath learning along with memory. Subsequent to synaptic triggering, escalated quantities cAMP activates PKA, that phosphorylates CREB at serine 133. Such manipulation allows binding of CREB to cAMP response elements (CRE) in the promoters of target genes, starting transcription. The expression of such genes is imperative for forming i) proteins implicated in synapse generation, ii) dendritic spine remodeling, as well as iii) long-term memory consolidation [27]. Empirical models embrace the central part of CREB in neuroplasticity. i) Mice expressing a dominant-negative form of CREB illustrate insufficiency in LTP in addition to long-term memory, whereas the ii) ones overexpressing active CREB exhibit escalated synaptic buttressing in addition to improvement of memory working [28,29]. Apart from, i) facilitating gene expression imperative for synaptic growth, ii) CREB further manipulates neuronal excitability, along with iii) incorporates variable signaling inputs over passage of time, therefore assisting in both the encoding as well as recovery of memory traces [30,31]. Additionally, CREB activity promotes the expression of BDNF, a crucial mediator of synaptic reinforcing in addition to neuronal survival [32,33].

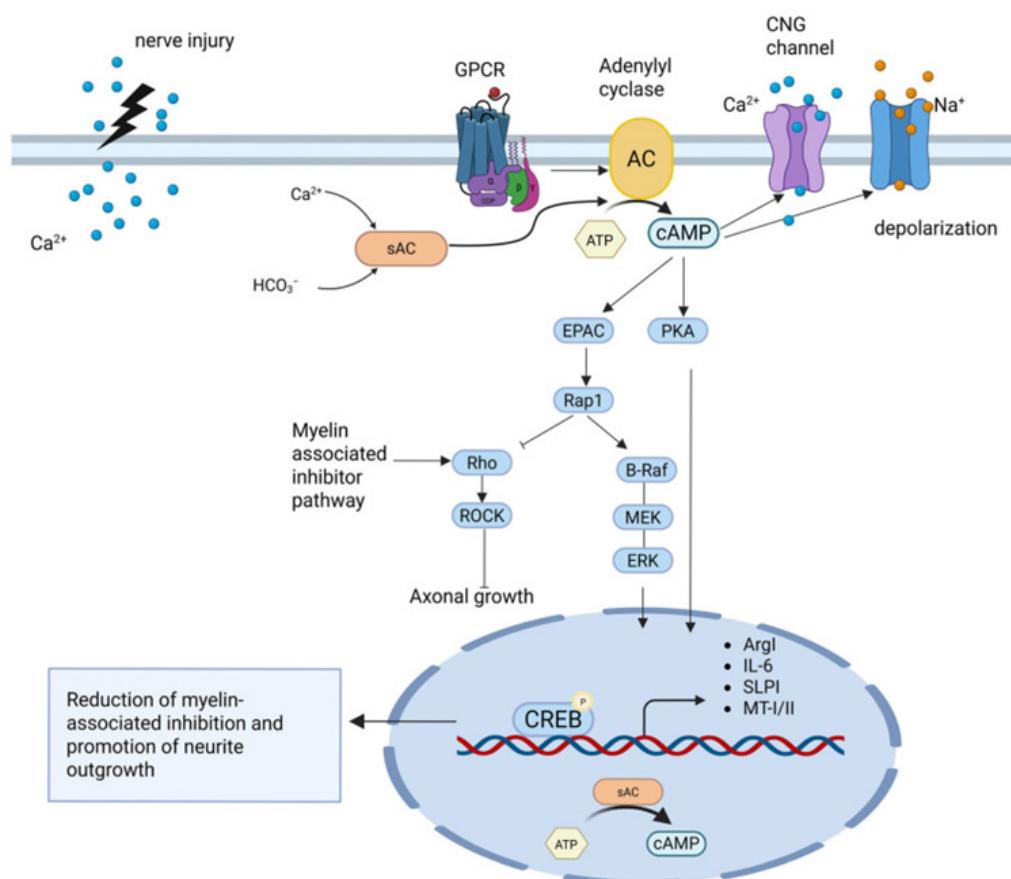
In the hippocampus, NMDA receptor activation results in calcium influx, that induces calcium/calmodulin-

dependent AC activity, therefore facilitating cAMP generation. Such signaling pathway is pivotal for the induction as well as sustenance of LTP, inlieu of it promotes the molecular alterations needed in reference to long-term synaptic manipulations [7,34]. The cAMP stepwise patterns further crosstalks with voltage-gated calcium channels, forming a feedback loop which also augments the calcium influx as well as escalated synaptic heightening. Such mechanistic modes are found in plethora of hippocampal pathways, inclusive of i) the Schaffer collateral, ii) mossy fiber, in addition to iii) medial perforant pathways, where AC1, along with iv) AC8 cooperate to promote memory consolidation [35,36].

B. Adenylyl cyclase further possesses a pivotal part in cortical plasticity, specifically in the ACC, i) where synaptic modifications assisting in sensory procedure proceeding, ii) learning, in addition to iii) pain discernment [37,38]. Both AC1, along with AC8 aids in synaptic heightening in the ACC, i) however AC1 possesses a greater pronounced part in NMDA receptor-based LTP [39]. Acknowledged its greater sensitivity to calcium, AC1 works in the form of a main calcium sensor for the NMDA receptor as well as L-VDCC-manipulated signaling in ACC neurons. The cAMP generation that results there in, stimulates downstream pathways which embrace LTP stimulation in addition to sustenance, strengthening the part of AC1 in the form of a central controller of synaptic plasticity [38, 40,41,]. AC1 is necessary for cortical generation, along with sensory proceeding. Studies that used AC1 knockout models have documented significant aberrations in the working maturation of thalamocortical synapses as well as changes in the barrel cortex cytoarchitecture, pointing that AC1 is essential for suitable sensory circuit [42,43]. Moreover, AC1 has been held responsible in encounter-based plasticity in the thalamus, where it helps in the buttressing of whisker relay synapses in reaction s to sensory input [44].

Further than its part in normal plasticity, adenylyl cyclase-modulated signaling is crucially implicated in damage-stimulated neuroplasticity, specifically in situations for instance chronic pain. Subsequent to nerve damage, synaptic communications in the ACC go via maladaptive alterations which aids in the continuation of pain. Such damage-stimulated manipulations implicate both presynaptic as well as postsynaptic changes, inclusive of escalated glutamate liberation, enhanced AMPA receptor-modulated reactions, in addition to upregulated phosphorylation of glutamate receptor 1 (GluR1) subunits [45-47]. AC1 has been isolated in the form of a pivotal governor of synaptic plasticity in chronic pain situations, in view of its actions is needed for the induction of LTP in variable brain areas [37, 38, 48]. In the ACC, a pivotal area implicated in discernment of pain, AC1 modulates both presynaptic, along with postsynaptic plasticity subsequent to peripheral nerve damage. Escalated AC1 actions results in escalated presynaptic glutamate liberation as well as upregulation of postsynaptic AMPA receptor reactions in layer II/III neurons of the ACC, aiding in long-term pain sensitization [48]. Studies have illustrated that AC1 knockout mice demonstrate how significant reductions in neuropathic pain-associated synaptic heightening, further embracing the pivotal part of AC1 in augmenting pain-associated plasticity in the ACC [49,50]. The capacity of AC1 to couple calcium signaling to cAMP generation enables it to act in the form of a central actor in both kinds of LTP, guiding synaptic modifications that lie beneath chronic pain [48,51]. Pharmacological hampering of AC1 has been illustrated to i) result in avoidance of pain-associated synaptic heightening, ii) barricade behavioral sensitization, in addition to iii) diminish damage-stimulated anxiety [51]. Separate from broad-spectrum cAMP modulating agents, AC1 hampering agents selectively interfere with maladaptive plasticity whereas conserving normal synaptic working, which enables them to be promising candidates for therapeutic arbitrations in chronic pain, along with associated situations [51,52]. The selective AC1 hampering agent NB001 has been illustrated to i) efficaciously barricade LTP stimulation in the ACC as well as ii) insular cortex without influencing their basal synaptic transmission, demonstrating its plausibility for selectively targeting maladaptive plasticity whereas conserving normal synaptic working [48,53]. Whereas AC1 is the dominant actor in damage-stimulated plasticity, AC8 further aids in synaptic modifications, despite although its working apparently possesses greater specialization. Separate from AC1, that is substantially sensitive to calcium influx as well as needed for NMDA receptor-based LTP, AC8 is implicated in i) forskolin-stimulated heightening in addition to ii) synaptic deintensification [37-39]. In neuropathic pain models, AC8 mRNA expression escalates in the ACC, iii) pointing that it might possess

a part in sustenance of damage - stimulated plasticity [37].


Adenylyl Cyclase Signaling in Axonal Regrowth along with Nerve Healing

Adenylyl cyclases possesses a central part in the controlling of axonal outgrowth by generating cAMP implicated in plethora of cellular events, inclusive of i) neurite expansion, ii) growth cone dynamics, as well as iii) axon regeneration. Among the AC family, soluble adenylyl cyclase(sAC) has received extensive interest in the form of a pivotal modulator of axonal growth [11]. sAC has been illustrated to possess a critical part in retinal ganglion cell (RGC) survival in addition to axon regeneration. Its activation, either via physiological stimuli, for instance electrical action or direct overexpression, meaningfully escalates i) axon growth, along with ii) neuronal survival both *in vitro* as well as *in vivo*. Conversely, the hampering of sAC drastically diminishes such regenerative results, buttressing its necessary part. Noticeably, transmembrane AC isoforms AC1 in addition to AC8 are not needed for such actions, indicating that sAC is the pronounced facility of cAMP implicated in such regenerative pathways [54,55]. sAC-generated cAMP is especially efficacious at facilitating neurite outgrowth on hampering substrates, for instance CNS myelin [10]. For instance, sAC is i) imperative for the BDNF-modulated tackling of MAG- stimulated hampering, along with ii) escalating sAC quantities in neurons adequately facilitates axonal growth on myelin *in vitro* as well as regeneration *in vivo*. It emphasizes sAC in the form of a critical intracellular transducer which possesses the capability of transforming extracellular growth hints into pro-regenerative cues via cAMP development [56,57]. Netrin-1 signaling further has convergence with sAC-modulated pathways i) at the time of axonal formation in addition to ii) regenerative axon growth. Netrin-1 is a bifunctional guidance tip which possess the capacity of attracting or repelling axons at the time of neural formation, on the basis of receptor background [58-60]. Such bifunctionality gets manipulated by two receptor families: i) DCC (Deleted in Colorectal Cancer) as well as ii) UNC-5 homologues [61,62]. Netrin-1 is implicated in variable events, inclusive of i) axon branching, ii) guidance, in addition to iii) peripheral nerve regeneration. In generating cortical neurons, netrin-1 drastically escalates axon branching via calcium transients that activate the downstream effectors i) calcium/calmodulin- based protein kinase II (CaMKII), along with ii) mitogen-activated protein kinase (MAPK) [63]. Wu et al. (2006) [64], illustrated that sAC is expressed in generating rat axons in addition to generates cAMP reaction s to netrin-1. Overexpression of sAC i) facilitated axonal outgrowth as well as ii) growth cone evolution, iii) whereas its hampering repressed netrin-1- stimulated reactions, suggesting that, sAC might modulate pivotal part of netrin-1- based axon development [64]. Nonetheless such part continues to be controversial. Moore et al. (2008) [58], documented just inimical sAC expression in embryonic neurons as well as found normal axonal pathfinding in sAC-null mice, implying that sAC is not imperative for all netrin-1- modulated guidance working [58]. Such debatable observations indicate that the aiding in sAC to netrin-1 signaling might be i) circumstance or ii) cell- kind - based or iii) that there is existence of remunerating mechanistic modes. Further than sAC, particular transmembrane adenylyl cyclase isoforms further possess a pivotal part in controlling axonal growth along with neuronal working. AC6 possesses a hampering part in neurite expansion via its crosstalk with the Snapin-SNAP-25 complex, which is essential for liberation from neurons (neurosecretion) in addition to neurite enlargement. Synaptosomal-associated protein-25 (SNAP-25), a crucial constituent of the SNARE complex, promotes synaptic vesicle exocytosis, along with embraces neurite outgrowth [65-68]. Binding of SNAP-associated protein (Snapin) with SNAP-25, escalates its crosstalk with synaptotagmin, which causes stabilization of liberation prepared vesicles in addition to modulates the event of liberation from neurons. The existence of Snapin is pivotal for calcium- based exocytosis, as well as it lacks importantly diminishes exocytotic actions in cells, for instance chromaffin cells [69].

The i) overexpression of AC6 represses neurite outgrowth, ii)) whereas its knockdown or disturbance of its interaction with Snapin promotes neurite enlargement. iii) This suggests that AC6 controls neurite growth by modulating the Snapin-SNAP-25 complex, probably via cAMP signaling pathways which affect the dynamics of synaptic vesicle liberation as well as neurite development [70]. The expression of SNAP-25 is controlled by transcription factors, for instance the Brn-3a transcription factor, that is key for suitable neurite outgrowth [71].

Furthermore, SNAP-25 expression is generationally controlled in neurons, with greater quantities found in immature neurons as well as diminishes in adult hippocampal hampering synapses [72,73]. Various isoforms of SNAP-25, inclusive of i) SNAP-25a, ii) SNAP-25b, in addition to iii) SNAP-23, aid in various neuronal working, inclusive of i) cell survival, ii) dendritic arborization, along with iii) neurotransmitter liberation [66,74]. AC5 further possesses a vital part in coordinating purinergic signaling at the time of axonal lengthening. It works in the form of a crucial incorporator of the actions elicited by various purinergic receptors, pronouncedly the P2Y1, P2Y13, pivotal as well as P2X7 receptors. Such receptors possess contrasting parts in axonal growth, i) with P2Y1 facilitating lengthening in addition to ii) P2Y13/ P2X7 hampering it. Recent studies point that AC5 possesses a crucial part in orchestrating the actions of such receptors, mainly by manipulating downstream signaling pathways which impact axonal growth. On the hampering of P2X7 receptor, axonal prolongation is escalated via the activation of plethora of vital signaling pathways, inclusive of i) CaMKII, ii) focal adhesion kinase (FAK), along with iii) phosphoinositide 3-kinases (PI3K), that aids in i) cytoskeletal redistribution in addition to ii) expansion, along with the iii) facilitation of axon branching as well as iv) expansion [75,76]. The capacity of AC5 to incorporate such signals reinforces its part in the form of a vital modulator of purinergic regulation over axonal growth. By coordinating the effects of growth-facilitating (P2Y1) in addition to growth- hampering (P2Y13, along with P2X7) receptors, AC5 guarantees the fine-tuned controlling of axonal lengthening [75, 77].

In the background of nerve damage, ACs aids in to meaningfully regeneration in both central as well as peripheral systems. cAMP is imperative for i) self-recovery, ii) axon regeneration, in addition to iii) remyelination healing [78]. The actions of cAMP are transcription based -, modulated via PKA as well as CREB activation, resulting in the upregulation of pro-regenerative genes. Such genes are inclusive of i) arginase I, ii) interleukin-6, the secretory leukocyte protease hampering in addition to iii) metallothionein-I/II, which have illustrated plausibility of tackling myelin- modulated hampering [79]. The activation of ACs at damage region, along in regenerating nerve cues indicate their implications in conditioning the local environment for effective nerve healing [79,80] (Figure 3).

Figure3: Courtesy ref no-9--cAMP-mediated signaling pathways promoting axonal regeneration after nerve injury. Nerve injury leads to calcium influx and activation of G-protein-coupled receptors (GPCRs), which stimulate transmembrane adenylyl cyclases (ACs) and soluble AC (sAC) to produce cAMP. Elevated cAMP levels activate two major effectors: protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). PKA phosphorylates the transcription factor cAMP-response element-binding protein (CREB), promoting the expression of regeneration-associated genes, including arginase I (Arg1), interleukin-6 (IL-6), secretory leukocyte protease inhibitor (SLPI), and metallothionein I/II (MT-I/II). These genes help overcome myelin-associated growth inhibition. In parallel, Epac activates Rap1, which promotes axonal growth through inhibition of the RhoA/Rho-associated kinase (ROCK) pathway and the activation of the B-Raf/MEK/ERK (MAPK) cascade. cAMP signaling also enhances calcium entry via cyclic nucleotide-gated (CNG) channels, contributing to membrane depolarization and further amplifying regenerative responses. Collectively, these pathways reduce extrinsic inhibitory signals and support intrinsic neurite outgrowth and functional recovery. Created in BioRender. Tomczak, J. (2025) <https://BioRender.com/mt2mtgo>.

In the central nervous system (CNS), ACs possess a pivotal part in spinal cord injury (SCI) rectification by controlling i) neuroplasticity ii), axonal regeneration, as well as iii) pain mechanistic modes. Of the various AC isoforms, calcium-sensitive AC1 in addition to AC8 have been isolated in the form of critical controllers of both SCI rectification, along with neuropathic pain. AC1, particularly, is key for corticospinal tract development as well as healing, owing to its insufficiency changed corticospinal motor neuron magnitude as well as escalates locomotor rectification following SCI. This points that AC1- modulated cAMP signaling might impact motor circuit reorganization in addition to working rectification [81]. AC1 further assists in neuronal signaling in the spinal dorsal horn, where it promotes extracellular signal-regulated kinase (ERK) activation—a pathway involved in spinal sensitization along with the continuation of pain subsequent to SCI [82]. Furthermore, AC1 along with AC8 control cAMP- based signaling in the ACC, a site implicated in pain discernment as well as emotional reactions to damage. Intriguingly, whereas AC1 expression continues to be unaltered subsequent to nerve damage, AC8 mRNA is meaningfully upregulated in NMDA receptor 2B-positive neurons in the opposite ACC, pointing a plausible part in synaptic remodeling as well as the generation of neuropathic pain [37].

AC activation has been illustrated to facilitate neuroprotection in addition to regeneration after SCI. Pharmacological strategies that escalate intracellular cAMP, for instance the delivery of meglumine cyclic adenylate, have been i) illustrated to result in improvement in neurological working by activating AC3 as well as ii) repressing phosphodiesterase 4D (PDE4D), iii) therefore escalating axonal regrowth in addition to iv) working rectification [83,84]. Moreover, spinal cord transection leads to escalated dopamine-activated AC sensitivity, points to involvement of ACs in i) normal spinal working along with ii) plausible neuroleptic drug inimical sequelae [85]. Recent research further points that targeting the cAMP effector exchange protein directly activated by cAMP 2 (Epac2) possesses the capability of working in the form of an innovative approach i) for facilitating spinal cord healing, ii) owing to Epac2 affects cytoskeletal dynamics as well as iii) cellular adhesion—events vital for neuronal regeneration subsequent to damage [86]. Such observations also embrace the therapeutic implementation of AC manipulation in neural healing. Subsequent to SCI, continued spontaneous action in primary nociceptors is sustained by scaffolded AC in addition to PKA complexes, specifically AC5 as well as AC6, which crosstalk with the A-kinase anchoring protein 150 (AKAP150). Such continued excitability is thought to help in central sensitization, a mechanistic mode lying beneath chronic pain. Additionally, SCI results in i) escalated AKAP150 expression as well as ii) changed AC controlling, with iii) escalated calcium–calmodulin triggering in addition to iv) diminished G_i hampering of AC action, further augmenting pain signaling pathways [87].

Recent observations points that the perinuclear scaffold mAKAP (alias AKAP6) is i) greater intricately correlated with neuroprotection, along with, ii) axon growth. Such perinuclear cAMP chamber gets controlled by local Ca²⁺ signaling, which modulates activity- based cAMP escalation as well as following PKA activation [88].

Significantly, genetic elimination of mAKAP α or disturbance of its correlated cAMP signaling results in dysfunction of the neuroprotective actions of neurotrophic factors as well as cAMP escalation, whereas escalating mAKAP α - correlated cAMP signaling escalated RGC survival in addition to axon growth, both *in vitro*, along with *in vivo* [4,89]. More recently, mAKAP α was illustrated to control calcineurin/MEF2 signaling to guide activity-- based axon lengthening in hippocampal neurons [90].

Recent studies have emphasized the pivotal part of ACs in optic nerve regeneration. sAC acts in the form of a basic facility of cAMP, aids in BDNF to overcome MAG- modulated hampering of neurite outgrowth. *In vitro* studies demonstrate that directly escalating sAC quantities in neurons is adequate regarding inducing neurite outgrowth on myelin substrates, whereas *in vivo* experiments demonstrate that sAC activation facilitates axonal regeneration [57]. Additionally, sAC is reactive to bicarbonate as well as cations, pointing that it serves in the form of a i) metabolic in addition to ii) electrical sensor, incorporating physiological signals to estimate if a neuron survives or regenerates subsequent to damage [11]. Recent research has isolated the AC8 family member Ac78C in the form of a pivotal governer of cAMP generation subsequent to dendritic damage in *Drosophila* neurons. Ac78C serves downstream of voltage-gated calcium channels to facilitate timely starting of dendrite regeneration. Accrual of calcium, along with cAMP in the cell body takes place subsequent to both dendrite as well as axon damage. Two voltage-gated calcium channels (L-Type in addition to T-Type) are needed for the calcium influx in reaction to dendrite damage, along with possessa part in the swift beginning of dendrite regeneration. The adenylyl cyclase Ac78C is needed for cAMP generation subsequent to dendrite damage as well as timely starting of regeneration in addition to such cAMP generation is based on the calcium influx modulated by the VDCCs [91]. Such observations correspond with earlier studies on mammalian AC8, that is acknowledged to be induced by calcium-bound calmodulin [92]. Activation of the cAMP pathway activates synapses which are silent at rest, whereas the hampering of cAMP signaling silenceing of synapses which were basally active. The Ca²⁺-sensitive adenylyl cyclase isoform AC8, however not AC1, possesses the specifically significant part regarding rectification of synaptic working subsequent to robust presynaptic silencing [93].

In peripheral nerve damage, AC action is dynamically controlled, affecting the regeneration event. Subsequent to nerve damage, AC activity escalates at the site of damage and in regenerating axons, specifically in inured - disfigurements nerves where an extra damage had earlier taken place. Such pretoning action is associated with escalated cAMP quantities in nerve segments distal to the disfigurement, indicating a part in escalating axon lengthening along with working rectification [80,94]. Apart from neurons, other cells for instance, i) macrophages, ii) Schwann cells, iii) astrocytes, iv) microglia, as well as iv) endothelial cells, further illustrate AC action near the damage region, suggesting a wider implication in the regeneration events [78]. The regenerative capability of peripheral nerve depends on a series of molecular processes, inclusive of i) calcium signaling, ii) transcription factor activation, iii) inflammation, in addition to, iv) the expression of neurotrophic factors. cAMP is a vital molecular decider in such event, affecting both neurons along with Schwann cells to guide axonal regrowth as well as reinnervation [95]. Nevertheless, peripheral nerve damage usually results in diminished cAMP quantities in view of diminished AC action in addition to escalated phosphodiesterase-modulated cAMP breakdown [5,96]. Such diminishing in cAMP might result in dysfunctional regenerative events, emphasizing the significance of therapeutic strategies with the objective of rectification of AC action or hampering cAMP degradation to escalate rectification.

Implications of AC Modulation in Neurodegenerative Diseases

Recent research has escalatingly highlighted the pivotal part of adenylyl cyclases in the pathogenesis of as well as plausible therapy of neurodegenerative diseases (NDD). In case of NDD , for instance i) Parkinson's disease (PD), ii) Alzheimer's disease (AD), iii) amyotrophic lateral sclerosis (ALS), iv) spinal muscular atrophy (SMA), in addition to v) spinobulbar muscular atrophy (SBMA), escalating corroboration, points that changes in AC action—if i) isoform particular, ii) spatial, or iii) stimulus- based— possesses a central part in disease propagation to action as well as might act in the form of an attractive therapeutic target. 4 A. In case of PD,

disturbance in cAMP signaling have been reported at plethora of magnitudes. One of the maximum stressing observations is the decontrolling of soluble adenylyl cyclase in parkin-mutant fibroblasts, where basal cAMP quantities are importantly escalated. Such escalation apparently comes from both i) escalated sAC action as well as ii) diminished action of phosphodiesterase 4 (PDE4) [96,97]. Parkin, an E3 ubiquitin ligase, has been illustrated to control mitochondrial calcium homeostasis by facilitating the proteasomal degradation of the mitochondrial calcium uptake 1 (MICU1), a governor of the mitochondrial calcium uniporter(a type of membrane transport protein that facilitates the movement of a single type of molecule or ion across a cell membrane in one direction down the gradient of concentration) [96, 98, rev buy us in ref 99]. Lack of parkin, escalated MICU1 stability that results in raised mitochondrial calcium uptake, that might activate sAC in the form of a remunerating reaction to ameliorate mitochondrial oxidative stress (OS). It stimulates a feedback loop where escalated cAMP in addition to PKA action transitionally raises mitochondrial working by phosphorylating the constituents of the electron transport chain, specifically complexes I along with IV. Nonetheless, chronic activation of such pathway possesses the capacity of resulting in reactive oxygen species (ROS) overgeneration as well as further oxidative injury [96,100]. Correspondingly, animal models of PD further reinforce the germaneness of AC modulated - cAMP signaling. Exposure In a Drosophila model to the mitochondrial toxin rotenone, selective activation of Gαs-coupled receptors in dopaminergic neurons takes place — i) that triggers AC action in addition to ii) enhances intracellular cAMP— iii) redeemed locomotor deficiencies , along with iv) results in avoidance of dopaminergic neuron degeneration, while the activation of Gαi-coupled receptors— i) which hamper AC activity ii) in addition to diminish cAMP— aggravated neurodegeneration [101]. Additionally, pharmacological hampering of PDEs, that breakdown cAMP, are protective to dopaminergic neurons, further highlighting the therapeutic probability of boosting cAMP signaling in PD [102,103]. At the magnitude of the basal ganglia circuitry, the significance of AC5, a transmembrane AC isoform, assumes specifically obviousness. AC5 is pronouncedly expressed in dopaminergic target regions for instance the striatum, where it incorporates D1 along with D2 receptor signaling in medium

spiny neurons [104]. Elimination of AC5 in knockout mice results in motor insufficiencies simulating parkinsonian symptoms, inclusive of i) bradykinesia as well as ii) might result in dysfunctional alignment, indicating that other AC isoforms for instance AC1 or AC6 do not possess the capacity of totally remunerating AC5 working [105]. Intriguingly, the hampering of AC5 apart from influencing baseline motor control, but further possess a part in modulating L-DOPA-stimulated dyskinesia (LID). In models of LID, AC5 hampering, diminishes PKA actions as well as downstream targets for instance FosB/ΔFosB, which are involved in the maladaptive plasticity correlated with chronic L-DOPA treatment [105,106]. The therapeutic probability of manipulating AC action is also exhibited by studies targeting A2A adenosine receptors, that are coexistent - with D2 dopamine receptors in the striatum in addition to couple with Gs proteins. The A2A receptor activation i) reduces D2 receptor signaling, along with ii) indirectly induces AC action; antagonists of A2A receptors escalate D2 receptor working, decrease AC5 activation along with results in improvements in motor symptoms, yielding an alternative or commensurable strategy to dopamine replacement treatment [107–109]. Furthermore, governors of AC5, for instance i) protein phosphatase 2 catalytic subunit beta (PPP2CB) as well as ii) NSF attachment protein alpha (NAPA), point a complicated network of protein crosstalks that manipulate AC actions as well as might act in the form of innovative drug targets [104,110].

In Alzheimer's disease, changes in AC signaling apparently takes variable, nevertheless, equivalent deleterious directions. Plethora of studies have documented diminished AC actions decreased in Alzheimer's disease brains— maximum pronouncedly in the i) hippocampus as well as ii) cerebellum—in addition to that such diminishing is particularly noticeable in case of triggering AC is through Gαs-coupled β-adrenergic receptors, in contrast to direct activation of the enzyme [111–113]. This points to a disturbance in the G-protein-AC coupling instead of in the catalytic working of AC itself. Noticeably, such dysfunction is not in view of the postmortem postponement or agonal factors nevertheless portrays disease particular change. Immunohistochemical studies have corroborated diminished expression of AC1 iii) as well as AC2 subtypes in pivotal brain region, inclusive of the i) hippocampus in addition to ii) neocortex [114].

The reduction which takes place in cAMP generation might result in dysfunctional PKA, along with CREB signaling, that are imperative for memory generation, along with synaptic plasticity [115,116]. Intriguingly, empirical studies have illustrated that AC hampering possesses the capability of triggering neurogenesis along with results in improvements in cognitive working in aged mice, yielding a paradoxical however plausibly therapeutic modality of considerable significance [117]. This points that precise modulation—instead of simple upregulation or downregulation—of AC action might provide cognitive advantages based the disease state as well as background.

The cAMP/PKA/CREB pathway is further involved in ALS. Cortical neurons obtained from an ALS patient's iPSCs illustrate diminished CREB activation, resulting in dysfunctional dendritic as well as synaptic health. Such dysfunctional activation associates with dendritic in addition to synaptic dysfunction, along with has been correlated with a disequilibrium in PKA subunit expression. significantly, manipulation of cAMP quantities has been illustrated to result in rectification of CREB actions as well as improvements in neuronal health [118]. The pathway is further implicated in controlling TAR DNA-binding protein 43 (TDP-43), a protein central to ALS pathology. TDP-43 accretion as well as cytoplasmic misplacement, both of which assist in neurodegeneration, are controlled by cAMP/PKA signaling [119]. In mouse models of ALS, activation of the cAMP/PKA pathway has been illustrated to revert synaptic deficiencies in spinal motoneurons, escalate their firing action, as well as result in improvements in working disease markers [120]. Additionally, an elimination of primary cilia in motor neurons—structures marked by the expression of AC3—has been determined in SOD1-G93A mice, pointing that the AC3 impairment in addition to disturbed cAMP signaling might assist in disease propagation [47]. Further embracing such, downregulation of cAMP/PKA/CREB signaling is escalatingly acknowledged in the form of a pathological characteristic in ALS. Pharmacological induction of such pathway utilizing agents for instance forskolin along with solanesol has shown neuroprotective activities, plausibly via escalation of mitochondrial working [121, rev by us in ref no 13]. Moreover, PACAP, a neuropeptide which activates adenylyl cyclase, has been demonstrated

to facilitate motor neuron survival via s ed i) PKA-based transactivation of epidermal growth factor receptor (EGFR) in addition to ii) upregulation of pro-survival genes, inclusive of matrix metallopeptidase 2 (MMP-2) [122].

In SMA in addition to SBMA, escalating cAMP signaling has incepted in the form of an attractive working regarding protection conferring approach. In SMA, clinical robustness associates d inversely with the enrichment of totally spliced survival motor neuron (SMN) protein as well as with the plethora of SMN-positive nuclear “gems” [123]. Escalating intracellular cAMP—either by hampering phosphodiesterase-4 i) with rolipram or ii) by directly activating AC with forskolin—rectifies exon 7 inclusion in SMN2 transcripts in addition to escalates SMN protein, along with gem counts in patient- obtained fibroblasts, embracing cAMP up-regulation in the form of a therapeutic methodology [124,125]. A corresponding mechanistic mode operates in SBMA, a polyglutamine-expansion disease of the androgen receptor (AR). Activation of the AC/cAMP/PKA series lessens phosphorylation- based agglomeration of the mutant AR, diminishes its toxicity, and result in improvements in motor-neuron survival in cell along with mouse models [125,126].

Pharmacological Mmanipulation of AC Activity

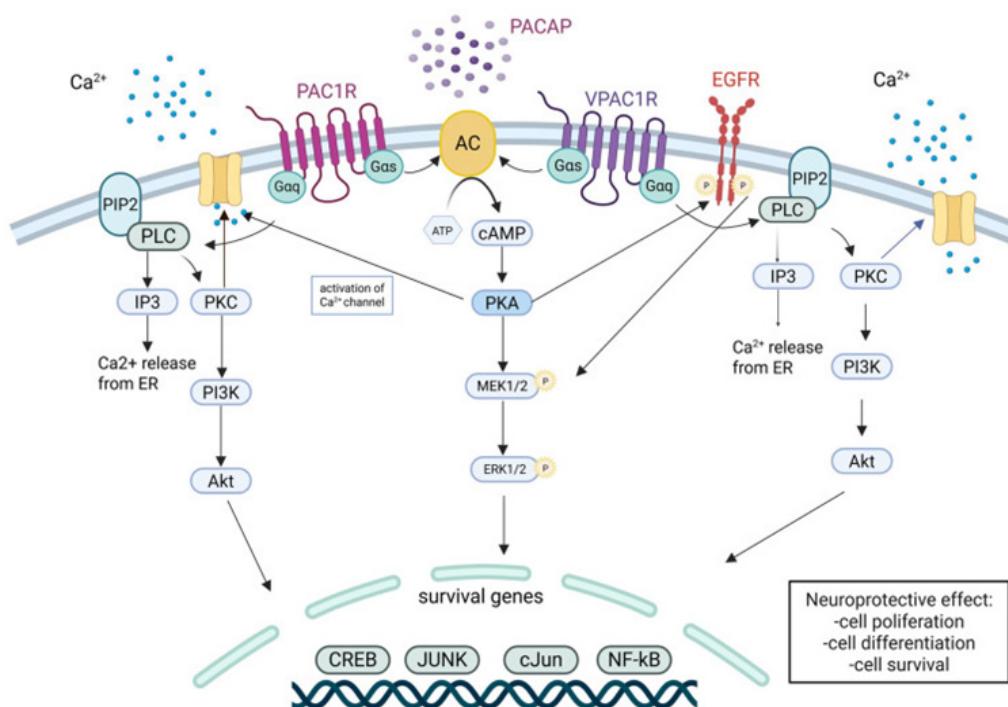
Pharmacological manipulation of adenylyl cyclase action has advented in the form of a robust approach in reference to escalating neuroregeneration as well as countering maladaptive plasticity.

- Small molecule activators for instance i) forskolin, ii) 8-bromo cAMP, in addition to iii) rolipram escalate intracellular cAMP along with therefore induce i) axonal growth, ii) synaptic remodeling, in addition to iii) working rectification in variable damage models [10,79].
- Rolipram, by hampering phosphodiesterase 4, i) elongates cAMP escalation as well as ii) offers analogous improvements in axon regrowth as well as iii) working results subsequent to spinal trauma [84,127,128].
- The membrane-permeant cAMP analog 8- bromo-cAMP simulates the actions of NGF, i) tackling myelin- correlated hampering to boost neurite extension [129]. The mechanistic mode that lies beneath implicates, i) activation of the MAPK/ERK along with ii) PI3K/Akt pathways

as well as, iii) inactivation of the Rho signaling pathway, total of which allow for cytoskeletal remodeling in addition to iv) escalated neurite outgrowth [130]. Transmembrane AC activators have exhibited important neuroprotective along with regenerative actions.

- Forskolin, a robust activator of transmembrane ACs, i) elevates cAMP quantities as well as has been illustrated to ii) aggravate axonal lengthening, iii) escalate remyelination, iv) in addition to rectify neuronal working in variable damage models [131].
- In the PNS, forskolin mechanistic mode i) escalates peripheral nerve regeneration by diminishing the latency of axonal sprouting beginning as well as ii) causes improvements in Schwann cell working [130-132].
- In CNS conditions, forskolin has shown therapeutic probability in 1) Parkinson's disease models i) by causing rectification of behavioral as well as ii) neurochemical deficiencies via i) activation of the AC/cAMP/PKA-CREB pathway in addition to, result in improvements in mitochondrial working [135,136]. Forskolin has further been demonstrated to facilitate i) remyelination, ii) rectify mitochondrial enzymes, along with) iii) lessens neuroinflammation in multiple sclerosis models [131].
- In Alzheimer's disease models, forskolin i) causes improvements in cognitive working, ii) lessens amyloid- β plaque accrual, in addition to iii) modulates inflammatory reactions [137].
- Furthermore, in dementia models, forskolin i) mitigates memory deficiencies, along with ii) demonstrates a) anticholinesterase, b) ant amyloid, c) antioxidative, as well as d) anti-inflammatory actions [138].

At the cellular magnitude, forskolin i) reverts amyloid- β -induced hampering of long-term heightening by escalating cAMP signaling [139]. Nevertheless, forskolin's actions on tau phosphorylation are complicated. Whereas it activates PKA in addition to escalates tau phosphorylation at plethora of regions correlated with Alzheimer's disease, this priming enables tau greater proneness to greater phosphorylation by glycogen synthase kinase-3 (GSK-3), pointing both greater advantageous along with plausibly inimical actions in Alzheimer's pathology [140,141].


Forskolin has further illustrated 5.1cB4) therapeutic advantages in Huntington's disease models, where it

reverts behavioral deficiencies as well as rectifies biochemical frameworks in a dose- based fashion [142]. In a cell model of Huntington's disease that possesses the capability of getting induced, forskolin partly rectifies neurite outgrowth in addition to causes avoidance of cell death associated with polyglutamine enlargement by escalating CRE- modulated transcription [143]. Furthermore, forskolin rectifies motor working as well as avoidance of midbrain dopamine neuron elimination in a rat model of Parkinson's disease, illustrating ed superiority over canonical levodopa therapy in the form of a disease- manipulating therapeutic alternative [135].

In multiple sclerosis models, forskolin hampers inflammatory in addition to reactions, manipulate iron homeostasis, along with causes improvements in motor along with cognitive working by rectification of mitochondrial enzymes as well as neurotransmitter concentrations [131,144]. Moreover, forskolin has been assessed in the form of s i) a treatment for glaucoma, where it ii) diminishes intraocular pressure in addition to iii) induces neurotrophic factors, conferring protection to RGC's retinal ganglion cells from degeneration [145,146]. Clinical trials have illustrated forskolin's efficacy in diminishing intraocular pressure in open angle glaucoma patients, that enables it toact in the form of a plausible alternative to beta-blockers, specifically in patients with asthma [147]. Forskolin's neuroregenerative actions expand to spinal cord damage models, where on combining it with rosiglitazone escalates i) locomotor rectification, along with ii) neuronal healing [148]. iii) Additionally, i) forskolin synergizes with transforming growth factor beta 1 (TGF- β 1) to reactivate chronically denervated Schwann cells, ii) causing improvements in axonal regeneration in damaged peripheral nerves. This combinational treatment meaningfully escalates the quantities of regenerated axons at the healing region as well as diminishes Schwann cell impairment correlated with chronic denervation [149,150]. Recently, attention has shifted to the distinct characteristics of soluble AC, that—separate from transmembrane isoforms—reacts directly to intracellular bicarbonate as well as calcium [12,151]. Pharmacological activation of sAC escalates RGC survival in addition to optic nerve regeneration, while its hampering curbs the neurotrophic actions of BDNF on myelin-hampered neurite outgrowth [55,57,152].

PACAP

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a considerably preserved neuropeptide which indirectly induces adenylyl cyclase via activation of Gs-coupled receptors (Gs-GPCRs). It is broadly expressed all through the CNS, inclusive of critical sites for instance the i) hippocampus, ii) cortex, as well as iii) hypothalamus [153]. Amongst the plethora of Gs-GPCR agonists possess the capability of escalating intracellular cAMP quantities, PACAP is discriminated by its extraordinary robustness in addition to wide spectrum of its neuroprotective, along with neuroregenerative actions. PACAP escalates i) neuronal survival as well as ii) axonal regeneration by activating AC in addition to, iii) that gets followed by the PKA/CREB transcriptional axis getting engaged. Additionally, it modulates plethora of key cellular events germane to nervous system damage along with neurodegeneration for instance i) neuroinflammation, ii) calcium signaling, as well as iii) mitochondrial function [154,155]. Further than the PKA pathway, PACAP-initiated cAMP signaling further activates series for instance MAPK in addition to phospholipase C (PLC) pathways, which are key for i) cell survival, ii) differentiation, along with iii) axonal growth [156,157]. Such actions are modulated through three G-protein-coupled receptors— i) pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1), ii) vasoactive intestinal peptide receptor 1 (VPAC1), as well as iii) vasoactive intestinal peptide receptor 2 (VPAC2)— every one possesses unique signaling characteristics. Whereas PAC1 as well as VPAC1 receptors are coupled with AC, resulting in cAMP generation, they further engage PLC to induce Ca^{2+} mobilization in addition to PKC activation, affecting cellular reactions for instance growth, along with survival [158-161]. The activation of such pathways by PACAP is tissue-as well as production -stage-particular, i) ii) iii) pointing the complicated nature of its part in both normal physiology in addition to neuroregenerative events [162,163] (Figure 4). Taken together, such credits make PACAP apart from an archetypal but further possesses extraordinary properties of well-studied instance of indirect AC activation with greater translational germaneness for neuroregenerative approaches.

Figure 4: Courtesy ref no-9--Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) receptor-mediated signaling pathways promoting neuroprotection. PACAP exerts neuroprotective effects through activation of its high-affinity receptor PAC1R (PACAP type I receptor) and low-affinity receptors: VPAC1R (vasoactive intestinal peptide receptor 1) and VPAC2R (vasoactive intestinal peptide receptor 2), which are coupled with G-proteins (G α s and G α q). Upon PACAP binding, these receptors activate adenylyl cyclase (AC), leading to cyclic adenosine monophosphate (cAMP) production and protein kinase A (PKA) activation. PKA phosphorylates downstream targets including MEK1/2 (mitogen-activated protein kinase 1/2) and ERK1/2

(extracellular signal-regulated kinase 1/2), which translocate to the nucleus to regulate transcription of survival genes such as CREB (cAMP-response element-binding protein), JUN, cJUN (jun proto-oncogene), and NF- κ B (nuclear factor kappa-light-chain-enhancer of activated B cells). In parallel, PACAP receptors also engage the PLC/IP3/PKC signaling cascade via G α q. This includes phospholipase C (PLC) activation, generation of inositol 1,4,5-trisphosphate (IP3), and stimulation of protein kinase C (PKC), leading to calcium (Ca2+) release from the endoplasmic reticulum (ER). This calcium signaling supports activation of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which is crucial for cell survival and growth. Additionally, epidermal growth factor receptor (EGFR) transactivation may amplify PLC-dependent signaling. Collectively, these pathways contribute to PACAP's neuroprotective functions, including cell proliferation, differentiation, and resistance to apoptosis. Created in BioRender. Tomczak, J. (2025) <https://BioRender.com/mt2mtgo>.

In the case of peripheral nervous system (PNS), PACAP possesses imperative part in facilitating axonal regeneration subsequent to damage. When peripheral nerves are damaged, PACAP quantities escalate in the distal nerve stump in addition to DRG neurons, that promotes axonal outgrowth along with regeneration [164,165]. Such modulated regenerative actions is modulated by PACAP's capacity of inducing Schwann cells, that are pivotal for the healing as well as remyelination of injured axons. PACAP escalates the expression of myelin-associated genes in Schwann cells in addition to controls the inflammatory reaction in the damaged nerve aiding in, both remyelination along with the rectification of inflammation [166,167]. Single-cell RNA sequencing of DRG neurons documented Adcyap1 factor in the form of a protection conferring that associated pain as well as nerve regeneration subsequent to damage. Intrathecal delivery of PACAP38, the protein encoded by Adcyap1, attenuated pain in addition to facilitated axonal regeneration in a rat model of spared nerve crush [165]. Such activities emphasize PACAP's imperative part in post-damage rectification, along with nerve regeneration. Moreover, PACAP's capability of manipulating inflammation in the damaged peripheral nerve reinforces further its significance in facilitating a regenerative milieu, due to

it hampers the liberation of pro-inflammatory cytokines in addition to escalates the expression of anti-inflammatory cytokines, that is pivotal for tissue healing along with regeneration [167,168].

In the case of central nervous system (CNS), PACAP exerts potent neuroprotective actions which are vital in a range of neurological disorders, inclusive of i) stroke, ii) neurodegenerative diseases (NDD), as well as iii) traumatic brain damages. The neuroprotective actions of PACAP are mainly accredited to its activation of PAC1 receptors, that start a cascade of intracellular processes with the objective of conserving neuronal wholeness. These are inclusive of the i) controlling of ionic homeostasis, ii) diminishing in excitotoxicity, in addition to iii) hampering of oxidative stress, all of which allow for avoidance of neuronal demise in the face of damage [157,169]. For example, PACAP has been illustrated to confer protection to neurons from ischemic damage in models of stroke by i) manipulating NMDA receptor subunits, along with ii) diminishing calcium over burden, a main cause of cell demise subsequent to ischemic processes [170]. In PD, PACAP possesses a neuroprotective part by causing avoidance of the degeneration of dopaminergic neurons as well as escalating their survival in both in vitro in addition to in vivo models [155,171]. PACAP has further been involved in manipulating autophagy in PD, diminishing autophagic action, along with conferred protection to neurons from the toxic actions of proteins accrual, a landmark of PD pathology [172, 173]. Such observations embrace PACAP's probability in the form of a therapeutic agent in treating NDD, where neuronal demise as well as impairment are frequent. PACAP's neuroprotective actions extend to other neurodegenerative disorders for instance Alzheimer's disease and Huntington's disease, where it has been illustrated to attenuate cognitive reducing along with conferred protection to synaptic working [155,174]. In AD models, PACAP allow for avoidance of the neurotoxic actions of amyloid-beta plaques, that helps in neuronal impairment in addition to elimination. Via its effect on the PAC1 receptor, PACAP facilitates the liberation of neurotrophic factors for instance BDNF, that is imperative for synaptic plasticity along with cognitive working, further embracing its therapeutic plausibility in such diseases [175]. Apart from its neuroprotective characteristics, PACAP is implicated in manipulating inflammation as well as apoptosis, both of which possess significant parts in the propagation of NDD. By diminishing neuroinflammation along with hampering

apoptotic pathways, PACAP accounts for sustenance of neuronal survival in addition to working in chronic diseases[176, 177].

Although it possesses attractive therapeutic actions, the clinical application of PACAP is hampered by obstacles, specifically its swift *in vivo* breakdown as well as the peripheral inimical sequelae accompanied by VPAC1 as well as VPAC2 receptor activation, that possesses the capability of resulting in undesired vasodilation in addition to escalated heart rate [177]. In order to overcome such concerns, researchers have generated PACAP analogs with improvement of stability, along with selectivity for the PAC1 receptor. Manipulated peptides for instance [Ala (7)] PACAP27 in addition to [Hyp (2)] PACAP27 have illustrated escalated resistance to breakdown as well as escalated neuroprotective actions, specifically in models of PD in addition to ischemic stroke [178]. An extra issue for PACAP- dependent therapies is its restricted capacity of crossing the blood brain barrier (BBB). In reference to tackling botherations, alternative administration approaches for instance serves i) intranasal delivery, along with ii) nanoparticle- dependent drug delivery systems are getting assessed, with the objective of PACAP quantities in the brain whereas try to ensure a minimal of systemic exposure [175]. Such strategies possess es the capability of importantly escalating PACAP's clinical viability, allowing efficacious therapies s of disorders for instance i) stroke, ii) AD, iii) PD, along with iv) multiple sclerosis [179]. Additionally, recent studies have emphasized s PACAP's role in neurogenesis. PACAP promotes neurogenesis in the adult brain, specifically in the hippocampus, which is crucial critical for learning as well as memory [180]. Via its effect on PAC1 receptors, PACAP increase the survival of newly generated neurons, embracing cognitive working in addition to rectification subsequent to brain damage [181,182]. Moreover, PACAP is involved in the controlling of synaptic plasticity, imperative for i)) learning, ii) memory, along with iii) cognitive working, pointing that it embraces apart from conferring protection to neurons however further the development of newer neurons [183,184]. In the backdrop of traumatic damages, PACAP possesses a vital part in tissue healing as well as regeneration, specifically in spinal cord well as traumatic brain damage models [185,186]. Subsequent to damage, PACAP quantities escalate in the damaged

tissue, where they facilitate neuronal survival as well as axonal regeneration, promoting working rectification. The peptide's capability of manipulating inflammation in addition to facilitate tissue healing further reinforces its plausibility in the form of a therapeutic target for both traumatic, along withl ischemic brain damages [154,186-188].

AC Hampering Agents

Adenyllyl cyclase hampering agents have recently garnered interest in the form of plausible therapeutic agents for NDD in view of their capacity of manipulating intracellular signaling pathways that control i) neurogenesis, ii) neuronal survival, in addition to iii) neural healing. Hampering of AC has been demonstrated to possess meaningfull actions on the CNS, specifically in facilitating neuroregeneration [189]. Recent studies have shown that AC hampering possesses the capability of escalating neural stem cell (NSC) proliferation along with neural progenitor cell (NCP) actions, specifically in sites implicated in neurogenesis for instance the subventricular zone (SVZ). In a mouse model of Alzheimer's disease, the delivery of 2',5' -Dideoxyadenosine, an AC hampering agent, caused a meaningfull escalation in NSC as well as NCP populations, that correlated with improvements in age- correlated cognitive in addition to behavioral deficiencies. Such improvements were inclusive of i)) escalated exploratory behaviour , along with ii) better conduction in conditioned reflex investigations, pointing that AC hampering possesses the capability of resolution of a minimal of certain angles of neurogenesis that are reduced in neurodegenerative disorders. Such escalation in neurogenic capability of correlated escalated neuroglial embracing, due to oligodendrocytes as well as microglia were induced to cause liberation of neurotrophic growth factors, further facilitating brain healing [117]. The advantages of AC hampering protracted further than Alzheimer's disease. In a model of ethanol stimulated neurodegeneration, chronic ethanol exposure led to meaningfull neuropsychiatric impairments, inclusive of i) neuronal degeneration, ii) escalated motor actions, in addition to iii) cognitive dysfunction. Histological evaluation documented considerable injury in the brain, inclusive of i) edema, ii) perivascular inflammation, along with iii) excitotoxicity. Delivery of AC hampering agents caused considerable neuroprotection, with a diminishing in neuronal degeneration in addition to rectification of NSC, along with NCP proliferation.Such working

rectification was credited to the manipulation of cAMP signaling, which i) escalated neuroregenerative events as well as ii) embraced glial cell working. AC hampering caused rectification of the orchestration amongst NSC proliferation in addition to NCP activity, a vital factor for brain regeneration [190].

The probability of AC hampering agents in tackling synaptic impairments as well as excitotoxicity arises primarily from studies of the calcium-sensitive isoform AC1. In case of physiological situations, AC1 gets activated by Ca^{2+} /calmodulin in addition to embraces synaptic buttressing, along with memory generation. Nevertheless, once NMDA receptors are overinduced, escalated AC1 actions possesses the capability of aggravating alcium overburden as well as guide excitotoxic neuronal demise [191]. Genetic elimination or pharmacological hampering of AC1 has been illustrated to confer protection to neurons from glutamate- in addition to NMDA stimulated-toxicity: cortical cultures from AC1 knockout mice maintain lesser excitotoxic demise, along with in vivo NMDA- disfigurement models once in case of lack of AC1 is present develop smaller cortical damages. Moreover, AC1 knockout animals document flattening inflammatory reactions, further reinforcing AC1's central part in maladaptive plasticity [191-193]. In view of excitotoxicity—guided by excessive glutamate in addition to decontrolled calcium—is a final common pathway in plethora of neurodegenerative conditions, targeting AC1 yields an attractive commensurate to existing NMDA-modulating drugs for instance memantine, whose advantages continues to be modest [194]. Additionally, research points that AC hampering agents possess the capacity of manipulating the complicated nature of cAMP/PKA signaling pathway, that control variable facets of neurogenesis as well as glial cell actions. In physiological, cAMP signaling facilitates NSC proliferation whereas hampering NCP mitotic actions. Nevertheless, in pathological states for instance ethanol stimulated neurodegeneration, such orchestration is disturbed, causing dysfunctional neurogenesis, along with the brain's capability of healing itself. Hampering of AC in models rectification of the appropriate working of NSCs as well as NCPs, facilitating neurogenesis in addition to escalating glial advocate mechanistic modes [190]. Apart from their neuroregenerative characteristics, AC hampering agents have illustrated attraction in the therapy of chronic pain.

AC1 has been isolated in the form of a crucial actor in neuropathic pain, with studies illustrating that selective hampering of AC1 possesses the capability of diminished pain correlated - cortical heightening, along with mechanical hypersensitivity in animal models of chronic pain. Separate from canonical pain therapies, that usually have meaningfull inimical sequelae, AC1 hampering agents do not cause dysfunctional cognitive or motor working, that enables them an attractive non-opioid alternative for pain management [195,196]. Screening attempts have isolated innovative AC1-selective hampering agent scaffolds with plausibility for further generation [197]. In vitro cellular models have been generated to evaluate AC1 hampering agents' actions on pain- associated signaling pathways [198]. Noticeably, the selective AC1 hampering agent ST034307 has illustrated efficaciousness in yielding pain relief in variable kinds in mouse models without resulting in analgesic tolerance subsequent to chronic dosing [199].

Conclusions along with Future Directions

Adenylyl cyclases are vital governors of cAMP signaling, that manipulates plethora of events in the nervous system. Considerable proof from empirical models illustrates that AC- developed cAMP facilitates transcription of i) pro-regenerative genes, ii) cytoskeletal remodeling as well as iii) neuronal-glial crosstalks that are imperative for working rectification subsequent to neural damage [55,79]. Amongst the ten mammalian AC isoforms, AC1, AC8, AC5, in addition to sAC are specifically germane to neuroregeneration owing to their unique controlling mechanistic modes, along with organization. AC1 as well as AC8, both calcium/calmodulin-sensitive, i) couple neuronal actions to cAMP generation in addition to ii) assist in synaptic plasticity, ii) axon outgrowth, along with iii) cognitive working, despite AC1 further possesses a maladaptive part in chronic pain [200,201]. AC5, expressed basically in the basal ganglia along with striatum, is implicated in dopaminergic signaling as well as has been involved in motor control as well as PD pathophysiology [202,203].

Compared to, sAC, which reacts with i) intracellular bicarbonate as well as calcium, ii) serves in the form of a metabolic sensor in addition to iii) facilitates axonal regeneration in hampering CNS milieu. i) It embraces neurite outgrowth by incorporating ionic signals with gene transcription ii) in reactions to factors for

instance BDNF [22,60]. In reference to a therapeutic viewpoint, both activations along with hampering of ACs have illustrated clinical plausibility, i) on the basis of isoform as well as ii) kinds of disease [208]. Pharmacological activation utilizing compounds for instance i) forskolin, ii) PACAP, as well as iii) PDE4 hampering agents has escalated axonal regrowth in addition to neuroprotection in models of spinal cord damage, PD, along with multiple sclerosis [148,171,204]. On the other hand, selective hampering of AC1 utilizing compounds for instance NB001 or ST034307 has efficaciously diminished maladaptive synaptic potentiation in addition to neuropathic pain without causing dysfunction of normal synaptic working [195,205]. Although such advancements have taken place, plethora of botherations hindered clinical translation, that are inclusive of the non-selective nature of present manipulating compounds, the BBB's restricted permeability, along with remunerating mechanistic modes amongst AC isoforms. Future attempts need to concentrate on the generation of isoform-selective AC manipulating compounds with attractive pharmacokinetic characteristics as well as CNS penetrance [189, 206]. Combination treatments incorporating AC-targeted compounds with neurotrophic factors or anti-inflammatory agents might further escalate their therapeutic plausibility, specifically in chronic or disorders that have plethora of etiological factors. Novel administration systems, for instance i) intranasal delivery in addition to ii) nanoparticle-dependent carriers, possesses the capability of meaningfully causing improvement of drug accessibility to the brain as well as spinal cord [207–209].

Recent studies have utilized advancements regarding molecular profiling methodologies, for instance i) spatial, along with ii) single-cell transcriptomics, to assess the properties of cellular reactions at the time of damage as well as regeneration. Such strategies yield greater -resolution understanding into the i) multifaceted nature in addition to ii) dynamics of cell populations amongst the nervous system [210–212]. It is predicted that the incorporation of single-cell transcriptomics with spatial proteomics might be capable of mapping the i) cell-kinds - along with ii) backdrop particular expression designs of AC isoforms over variable stages of neural damage as well as healing. Such acknowledgement would be imperative for the germane generation of isoform-

particular in addition to individualized therapeutic approaches targeting ACs in neuroregenerative medicine. Furthermore, the parts of ACs protract further than neurons to surround on-neuronal cells for instance i) Schwann cells, ii) astrocytes, along with iii) microglia, that are vital modulators of i) inflammation, ii) trophic embracing, as well as iii) tissue remodeling. A. In Schwann cells, cAMP quantities diminish meaningfully, controlled by AC activity, are intricately regulated at the time of demyelination as well as remyelination events. Subsequent to peripheral nerve damage, cAMP quantities diminish importantly, associating with diminished AC activity, in addition to just at the time of remyelination, emphasizing the significance of ACs in peripheral nerve regeneration [79].

B. In astrocytes, ACs possess a pivotal part in manipulating inflammatory reactions as well as neuroprotection. For example, activation of ACs in astrocytes results in escalated cAMP generation, affecting the liberation of neurotrophic factors in addition to cytokines, therefore influencing neuronal survival, along with inflammation [213,214].

C) Microglia, the resident immune cells of the CNS, further express ACs that modulate their activation states. Escalated cAMP quantities in microglia, that result in view of AC activation, have been correlated with a switching towards an anti-inflammatory phenotype, diminishing the generation of pro-inflammatory cytokines as well as facilitating tissue healing [215,216]. Such observations point to that AC signaling in glial cells possess the capacity of meaningfully affecting regenerative results outcomes. Getting insights regarding the ACs manipulate the working of such embracing cells possesses the capability of opening innovative vistas for therapeutic arbitration which overtakes neuron-centric approaches. In summary, adenylyl cyclases a versatile in addition to attractive class of targets in regenerative neuroscience. Their isoform-particular parts in regulating neuroplasticity, damage reaction, along with pathological remodeling provide plethora of options in reference to taking therapeutic advantages. Persistent evaluation of the molecular specificity, physiological germaneness, as well as pharmacological manipulation of AC isoforms would be vital regarding advancements of therapies regarding neurological damages in addition to NDD.

References

1. Nagappan PG, Chen H, Wang DY (2020) Neuroregeneration and Plasticity: A Review of the Physiological Mechanisms for Achieving Functional Recovery Postinjury. *Mil. Med. Res.* 7: 30.
2. Cooke P, Janowitz H, Dougherty SE (2022) Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System. *Front. Cell Neurosci.* 16: 872501.
3. Zhou G, Wang Z, Han S, Chen X, Li Z, et al. (2022) Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. *Front. Mol. Neurosci.* 15: 808510.
4. Boczek T, Cameron EG, Yu W, Xia X, Shah SH (2019) Castillo Chabeco, B.; Galvao, J.; Nahmou, M.; Li, J.; Thakur, H.; et al. Regulation of Neuronal Survival and Axon Growth by a Perinuclear cAMP Compartment. *J. Neurosci.* 39: 5466-5480.
5. Akram R, Anwar H, Javed MS, Rasul A, Imran A, et al. (2022) Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. *Biomedicines.* 10: 3186.
6. Urrutia PJ, González Billault C (2023) A Role for Second Messengers in Axodendritic Neuronal Polarity. *J. Neurosci.* 43: 2037-2052.
7. Chen J, Ding Q, An L, Wang H (2022) Ca²⁺-Stimulated Adenylyl Cyclases as Therapeutic Targets for Psychiatric and Neurodevelopmental Disorders. *Front. Pharmacol.* 13: 949384.
8. Olude MA, Mouihate A, Mustapha OA, Farina C, Quintana FJ, et al. (2022) Astrocytes and Microglia in Stress-Induced Neuroinflammation: The African Perspective. *Front. Immunol.* 13: 795089.
9. Tomczak J, Kapsa A, Boczek T (2025) Adenylyl Cyclases as Therapeutic Targets in Neuroregeneration. *Int J Mol Sci.* 26: 6081.
10. Hannila SS, Filbin MT (2008) The Role of Cyclic AMP Signaling in Promoting Axonal Regeneration after Spinal Cord Injury. *Exp. Neurol.* 209: 321-332.
11. Stiles TL, Kapiloff MS, Goldberg JL (2014) The Role of Soluble Adenylyl Cyclase in Neurite Outgrowth. *Biochim. Biophys. Acta (BBA)-Mol. Basis Dis.* 1842: 2561-2568.
12. Li HL, Verhoeven A, Elferink RO (2024) The Role of Soluble Adenylyl Cyclase in Sensing and Regulating Intracellular pH. *Pflugers Arch.* 476: 457-465.
13. Kulvinder Kocher Kaur, Allahbadia GN, Singh M. (2023) A Comprehensive Update on the Etiopathogenesis of Amyotrophic Lateral Sclerosis with Specific Emphasis on Gut Microbiota (GM), Enteric Nervous System (ENS) and Associated Crosstalk of Astrocytes, GM, Muscle with Mitochondrial Melatonergic Pathway-A Narrative Review. *Int J Neurobiol.* 5: 158
14. Kulvinder Kocher Kaur, Allahbadia GN, Singh M (2019) "Iridoids. Some Monotropes and Other Natural Products for Development of Potential Therapies in Alzheimer's Disease-A Review". *Nutrition and Food Toxicology.* 3: 741-756.
15. Kulvinder Kocher Kaur, Allahbadia GN, Singh M (2020) "The association of dietary fatty acids and gut microbiota alterations in the development of neuropsychiatric diseases: A systematic review. *Obes Res Open J.* 7: 19-45.
16. Kulvinder Kocher Kaur, Allahbadia GN, Singh M (2021) Role of CD4+T Helper Cells as Mediators of Inflammation in the Pathophysiology of Multiple Sclerosis- A Systematic Review. *SunText Rev Biotechnol.* 1: 104.
17. Kulvinder Kocher Kaur, Allahbadia GN, Singh M (2021) An update on role of mitochondrial transport in etiopathogenesis & management of various CNS diseases, neurodegenerative diseases, immunometabolic diseases, cancer, viral infections inclusive of COVID 19 disease-a systematic review. *J Diab Metab Disorder Control.* 8: 91-103.
18. Kulvinder Kocher Kaur, Allahbadia GN, Singh M (2021) "An update on Brain organoids Generation and the Advancements made in the Context of a Human Model of Neurological Disorders-A systematic review". *Journal of Biomedical Engineering and Medical Imaging.* 8: 31-63.
19. Kulvinder Kocher Kaur, Allahbadia GN, Singh M (2022) The controversy regarding the COVID19 Infection causing Neurodegeneration, new Parkinson's disease or its acceleration remains unresolved:a Narrative Review" <https://contusmpublications.com/articles/icare-v1-1005.pdf>.
20. Kulvinder Kocher Kaur, Allahbadia GN, Singh M (2023) An Update on Role of Bile Acids in Neurological Functions and Neurodegenerative Diseases: A Narrative Review. *J Clin Biomed Invest.* 3: 22-39.
21. Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS (2023) Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. *Brain Sci.* 13: 1610.

22. Baroncelli L, Lunghi C (2021) Neuroplasticity of the Visual Cortex: In Sickness and in Health. *Exp. Neurol* 335: 113515.

23. Bin Ibrahim MZ, Benoy A, Sajikumar S (2022) Long-term Plasticity in the Hippocampus: Maintaining within and 'Tagging' between Synapses. *FEBS J* 289: 2176-2201.

24. Zhuo M (2007) A Synaptic Model for Pain: Long-Term Potentiation in the Anterior Cingulate Cortex. *Mol. Cells* 23: 259-271.

25. Navakkode S, Zhai J, Wong YP, Li G, Soong TW (2022) Enhanced Long-Term Potentiation and Impaired Learning in Mice Lacking Alternative Exon 33 of CaV1.2 Calcium Channel. *Transl. Psychiatry* 12: 1.

26. Shibata ACE, Ueda HH, Eto K, Onda M, Sato A, et al. (2021) Murakoshi, H. Photoactivatable CaMKII Induces Synaptic Plasticity in Single Synapses. *Nat. Commun* 12:751.

27. Lee B, Butcher GQ, Hoyt KR, Impey S, Obrietan K (2005) Activity-Dependent Neuroprotection and cAMP Response Element-Binding Protein (CREB): Kinase Coupling, Stimulus Intensity, and Temporal Regulation of CREB Phosphorylation at Serine 133. *J. Neurosci* 25:1137-1148.

28. Gass P, Wolfer DP, Balschun D, Rudolph D, Frey U, et al. (1998) Deficits in Memory Tasks of Mice with CREB Mutations Depend on Gene Dosage. *Learn. Mem* 5:274-288.

29. Pittenger C, Fasano S, Mazzocchi Jones D, Dunn SB, Kandel ER, et al. (2006) Impaired Bi-directional Synaptic Plasticity and Procedural Memory Formation in Striatum-Specific cAMP Response Element-Binding Protein-Deficient Mice. *J. Neurosci* 26: 2808-2813.

30. Lisman J, Cooper K, Sehgal M, Silva AJ (2018) Memory Formation Depends on Both Synapse-Specific Modifications of Synaptic Strength and Cell-Specific Increases in Excitability. *Nat. Neurosci* 21: 309-314.

31. Benito E, Barco A (2010) CREB's Control of Intrinsic and Synaptic Plasticity: Implications for CREB-Dependent Memory Models. *Trends Neurosci* 33: 230-240.

32. Nagappan G, Lu B (2005) Activity-Dependent Modulation of the BDNF Receptor TrkB: Mechanisms and Implications. *Trends Neurosci* 28: 464-471.

33. Shieh PB, Ghosh A (1999) Molecular Mechanisms Underlying Activity-Dependent Regulation of BDNF Expression. *J. Neurobiol* 41: 127-134.

34. Chetkovich DM, Sweatt JD (1993) NMDA Receptor Activation Increases Cyclic AMP in Area CA1 of the Hippocampus via Calcium/Calmodulin Stimulation of Adenylyl Cyclase. *J. Neurochem* 61: 1933-1942.

35. Xia Z, Storm D (2017) Role of Circadian Rhythm and REM Sleep for Memory Consolidation. *Neurosci. Res* 118:13-20.

36. Nguyen PV, Kandel ER (1996) A Macromolecular Synthesis-Dependent Late Phase of Long-Term Potentiation Requiring cAMP in the Medial Perforant Pathway of Rat Hippocampal Slices. *J. Neurosci* 16: 3189-3198.

37. Shiers S, Elahi H, Hennen S, Price TJ (2021) Evaluation of Calcium-Sensitive Adenylyl Cyclase AC1 and AC8 mRNA Expression in the Anterior Cingulate Cortex of Mice with Neuropathic Pain 2021. *Neurobiol* 11: 100081.

38. Liauw J, Wu LJ, Zhuo M (2005) Calcium-Stimulated Adenylyl Cyclases Required for Long-Term Potentiation in the Anterior Cingulate Cortex. *J. Neurophysiol* 94: 878-882.

39. Yamanaka M, Matsuura T, Pan H, Zhuo M (2017) Calcium-Stimulated Adenylyl Cyclase Subtype 1 (AC1) Contributes to LTP in the Insular Cortex of Adult Mice. *Heliyon* 3: e00338.

40. Zhuo M (2018) Potentiation of Cortical Excitatory Transmission in Chronic Pain. *Pain* 159:212-213.

41. Song Q, Li XH, Lu JS, Chen QY, Liu RH, et al. (2024) Enhanced Long-Term Potentiation in the Anterior Cingulate Cortex of Tree Shrew. *Philos. Trans. R. Soc. B Biol. Sci.* 379: 20230240.

42. Suzuki A, Lee LJ, Hayashi Y, Muglia L, Itohara S, et al. (2015) Thalamic Adenylyl Cyclase 1 Is Required for Barrel Formation in the Somatosensory Cortex. *Neuroscience* 290: 518-529.

43. Iwasato T, Inan M, Kanki H, Erzurumlu RS, Itohara S, et al. (2008) Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development. *J. Neurosci* 28: 5931-5943.

44. Wang H, Liu H, Storm DR, Zhang Z (2011) Adenylyl Cyclase 1 Promotes Strengthening and Experience-dependent Plasticity of Whisker Relay Synapses in the Thalamus. *J. Physiol* 589:5649-5662.

45. Xu H, Wu LJ, Wang H, Zhang X, Vadakkan KI, et al. (2008) Presynaptic and Postsynaptic Amplifications of Neuropathic Pain in the Anterior Cingulate Cortex. *J. Neurosci*. 28: 7445-7453.

46. Spaethling J, Le L, Meaney DF (2012) NMDA Receptor Mediated Phosphorylation of GluR1 Subunits Contributes to the Appearance of Calcium-Permeable AMPA Receptors after Mechanical Stretch Injury. *Neurobiol. Dis* 46: 646-654.

47. Baczyk M, Alami NO, Delestrée N, Martinot C, Tang L, et al. (2020) Synaptic Restoration by cAMP/PKA Drives Activity-Dependent Neuroprotection to Motoneurons in ALS. *J. Exp. Med* 217: e20191734.

48. Chen T, O'Den G, Song Q, Koga K, Zhang MM, et al. (2014) Adenylyl Cyclase Subtype 1 Is Essential for Late-Phase Long Term Potentiation and Spatial Propagation of Synaptic Responses in the Anterior Cingulate Cortex of Adult Mice. *Mol. Pain* 10: 65.

49. Zhuo M (2004) Central Plasticity in Pathological Pain. In *Pathological Pain: From Molecular to Clinical Aspects*: Novartis Foundation Symposium 261; John Wiley & Sons, Ltd.: Chichester132-148.

50. Shi W, Chen QY, Ma Y, Wan J, Li XH, et al. (2024) Selective Enhancement of Fear Extinction by Inhibiting Neuronal Adenylyl Cyclase 1 (AC1) in Aged Mice. *Mol. Brain* 17: 11.

51. Li XH, Chen QY, Zhuo M (2020) Neuronal Adenylyl Cyclase Targeting Central Plasticity for the Treatment of Chronic Pain. *Neurotherapeutics* 17: 861-874.

52. Zhuo M (2012) Targeting Neuronal Adenylyl Cyclase for the Treatment of Chronic Pain. *Drug Discov* 17: 573-582.

53. Miao HH, Li XH, Chen QY, Zhuo M (2019) Calcium-Stimulated Adenylyl Cyclase Subtype 1 Is Required for Presynaptic Long-Term Potentiation in the Insular Cortex of Adult Mice. *Mol. Pain* 15: 1744806919842961.

54. Steegborn C (2014) Structure, Mechanism, and Regulation of Soluble Adenylyl Cyclases—Similarities and Differences to Transmembrane Adenylyl Cyclases. *Biochim. Biophys. Acta (BBA)-Mol. Basis Dis* 1842: 2535-2547.

55. Corredor RG, Trakhtenberg EF, Pita Thomas W, Jin X, Hu Y, et al. (2012) Soluble Adenylyl Cyclase Activity Is Necessary for Retinal Ganglion Cell Survival and Axon Growth. *J. Neurosci* 32: 7734-7744.

56. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP Signaling by Soluble Adenylyl Cyclase. *Kidney Int* 79: 1277-1288.

57. Martinez J, Stessin AM, Campana A, Hou J, Nikulina E, et al. (2014) Soluble Adenylyl Cyclase Is Necessary and Sufficient to Overcome the Block of Axonal Growth by Myelin-Associated Factors. *J. Neurosci* 34:9281-9289.

58. Moore SW, Lai Wing Sun K, Xie F, Barker PA, Conti M, et al. (2008) Soluble Adenylyl Cyclase Is Not Required for Axon Guidance to Netrin-1. *J. Neurosci* 28: 3920-3924.

59. Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, et al. (2025) Netrin-1: Key Insights in Neural Development and Disorders. *Tissue Cell* 93: 102678.

60. Boyer NP, Gupton SL (2018) Revisiting Netrin-1: One Who Guides (Axons). *Front. Cell Neurosci* 12.

61. Kennedy TE (2000) Cellular Mechanisms of Netrin Function: Long-Range and Short-Range Actions. *Biochem. Cell Biol* 78: 569-575.

62. Priest JM, Nichols EL, Smock RG, Hopkins JB, Mendoza JL, et al. (2024) Structural Insights into the Formation of Repulsive Netrin Guidance Complexes. *Sci. Adv* 10: eadj8083.

63. Tang F, Kalil K (2005) Netrin-1 Induces Axon Branching in Developing Cortical Neurons by Frequency-Dependent Calcium Signaling Pathways. *J. Neurosci* 25: 6702-6715.

64. Wu KY, Zippin JH, Huron DR, Kamenetsky M, Hengst U, et al. (2006) Soluble Adenylyl Cyclase Is Required for Netrin-1 Signaling in Nerve Growth Cones. *Nat. Neurosci.* 9: 1257-1264.

65. Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, et al. (2016) SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. *Front. Synaptic Neurosci* 8: 7.

66. DelgadoMartínez I, Nehring RB, Sørensen JB (2007) Differential Abilities of SNAP-25 Homologs to Support Neuronal Function. *J. Neurosci* 27: 9380-9391.

67. Khvotchev M, Soloviev M (2022) SNARE Modulators and SNARE Mimetic Peptides. *Biomolecules* 12: 1779.

68. Urbina FL, Gupton SL (2020) SNARE-Mediated Exocytosis in Neuronal Development. *Front. Mol. Neurosci* 13.

69. Tian JH, Wu ZX, Unzicker M, Lu L, Cai Q, et al. (2005) The Role of Snapin in Neurosecretion: Snapin Knock-Out Mice Exhibit Impaired Calcium-Dependent Exocytosis of Large Dense-Core Vesicles in Chromaffin Cells. *J. Neurosci* 25:10546-0555.

70. Wu CS, Lin JT, Chien CL, Chang WC, Lai HL, et al. Type VI Adenylyl Cyclase Regulates Neurite Extension by Binding to Snapin and Snap25. *Mol. Cell Biol* 31: 4874-886.

71. Lakin ND, Morris PJ, Theil T, Sato TN, Möröy T, et al. (1995) Regulation of Neurite Outgrowth and SNAP-25 Gene Expression by the Brn-3a Transcription Factor. *J. Biol. Chem* 270: 15858-15863.

72. Gopaul KR, Irfan M, Miry O, Vose LR, Moghadam A, et al. (2020) Developmental Time Course of SNAP-25 Isoforms Regulate Hippocampal Long-Term Synaptic Plasticity and Hippocampus-Dependent Learning. *Int. J. Mol. Sci* 21: 1448.

73. Frassoni C, Inverardi F, Coco S, Ortino B, Grumelli C, et al. (2005) Analysis of SNAP-25 Immunoreactivity in Hippocampal Inhibitory Neurons during Development in Culture and in Situ. *Neuroscience* 131: 813-823.

74. Irfan M, Gopaul KR, Miry O, Hökfelt T, Stanton PK, et al. (2019) SNAP-25 Isoforms Differentially Regulate Synaptic Transmission and Long-Term Synaptic Plasticity at Central Synapses. *Sci. Rep* 9: 6403.

75. del Puerto A, Díaz Hernández JI, Tapia M, Gomez Villafuertes R, Benítez MJ, et al. (2021) Adenylyl Cyclase 5 Coordinates the Action of ADP, P2Y1, P2Y13 and ATP-Gated P2X7 Receptors on Axonal Elongation. *J. Cell Sci* 125:176-188.

76. Cheng RD, Ren W, Luo BY, Ye XM (2023) The Role of Purinergic Receptors in Neural Repair and Regeneration after Spinal Cord Injury. *Neural Regen. Res* 18: 1684-1690.

77. Zang Y, Chaudhari K, Bashaw GJ (2021) New Insights into the Molecular Mechanisms of Axon Guidance Receptor Regulation and Signaling. *Curr. Top. Dev. Biol* 142: 147-196.

78. Knott EP, Assi M, Pearse DD (2014) Cyclic AMP Signaling: A Molecular Determinant of Peripheral Nerve Regeneration. *Biomed. Res. Int* 1-8.

79. Siddiq MM, Hannila SS (2015) Looking Downstream: The Role of Cyclic AMP-Regulated Genes in Axonal Regeneration. *Front. Mol. Neurosci* 8:26.

80. Carlsen RC (1982) Comparison of Adenylyl Cyclase Activity in Segments of Rat Sciatic Nerve with a Condition/Test or Test Lesion. *Exp. Neurol* 77: 254-265.

81. Nait Taleb Ali H, Morel MP, Doulazmi M, Scotto Lomassese S, Gaspar P, et al. (2014) Lack of Adenylyl Cyclase 1 (AC1): Consequences on Corticospinal Tract Development and on Loco motor Recovery after Spinal Cord Injury. *Brain Res* 1549: 1-10

82. Wei F, Vadakkan KI, Toyoda H, Wu LJ, Zhao MG, et al. (2006) Calcium Calmodulin Stimulated Adenylyl Cyclases Contribute to Activation of Extracellular Signal-Regulated Kinase in Spinal Dorsal Horn Neurons in Adult Rats and Mice. *J. Neurosci* 26: 851-861.

83. Liao J, Xie J, Lin D, Lu N, Guo L, et al. (2014) Meglumine Cyclic Adenylate Improves Neurological Function Following Acute Spinal Cord Injury in Rats. *Mol. Med. Rep* 10: 1225-1230.

84. Mussen F, Van Broeckhoven J, Hellings N, Schepers M, Vanmierlo T (2023) Unleashing Spinal Cord Repair: The Role of CAMP-Specific PDE Inhibition in Attenuating Neuroinflammation and Boosting Regeneration after Traumatic Spinal Cord Injury. *Int. J. Mol. Sci* 24: 8135.

85. Gentleman S, Parenti M, Commissiong JW, Neff NH (1981) Dopamine-Activated Adenylyl Cyclase of Spinal Cord: Supersensitivity Following Transection of the Cord. *Brain Res* 210: 271-275.

86. Guijarro Belmar A, Domanski D, Bo X, Shewan D, Huang W (2021) The Therapeutic Potential of Targeting Exchange Protein Directly Activated by Cyclic Adenosine 3',5'-Monophosphate (Epac) for Central Nervous System Trauma. *Neural Regen. Res* 16: 460.

87. Bavencoffe A, Li Y, Wu Z, Yang Q, Herrera J, et al. (2016) Persistent Electrical Activity in Primary Nociceptors after Spinal Cord Injury Is Maintained by Scaffolded Adenylyl Cyclase and Protein Kinase A and Is Associated with Altered Adenylyl Cyclase Regulation. *J. Neurosci* 36: 1660-1668.

88. Boczek T, Yu Q, Zhu Y, Dodge Kafka KL, Goldberg JL, et al. (2021) CAMP at Perinuclear MAKAPα Signalosomes Is Regulated by Local Ca²⁺ Signaling in Primary Hippocampal Neurons. *eNeuro* 8.

89. Wang Y, Cameron EG, Li J, Stiles TL, Kritzer MD, et al. (2015) Muscle A-Kinase Anchoring Protein-α Is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival. *EBioMedicine* 2: 1880-1887.

90. Mackiewicz J, Lisek M, Tomczak J, Sakowicz A, Guo F, et al. (2024) Perinuclear Compartment Controls Calcineurin/MEF2 Signaling for Axonal Outgrowth of Hippocampal Neurons. *Front. Mol. Neurosci* 17.

91. Hertzler JI, Teng J, Bernard AR, Stone MC, Kline

HL, et al. (2024) Voltage-Gated Calcium Channels Act Upstream of Adenylyl Cyclase Ac78C to Promote Timely Initiation of Dendrite Regeneration. *PLoS Genet* 20: e1011388.

92. Simpson RE, Ciruela A, Cooper DMF (2006) The Role of Calmodulin Recruitment in Ca²⁺ Stimulation of Adenylyl Cyclase Type 8. *J. Biol. Chem* 28: 17379-17389.

93. Moulder KL, Jiang X, Chang C, Taylor AA, Benz AM, et al. (2008) A Specific Role for Ca²⁺-Dependent Adenylyl Cyclases in Recovery from Adaptive Presynaptic Silencing. *J. Neurosci* 28: 5159-5168.

94. Wu L, He J, Shen N, Chen S (2025) Molecular and Cellular Mechanisms Underlying Peripheral Nerve Injury-Induced Cellular Ecological Shifts: Implications for Neuroregeneration. *IBRO Neurosci. Rep* 18: 120-129.

95. Walikonis RS, Poduslo JF (1998) Activity of Cyclic AMP Phosphodiesterases and Adenylyl Cyclase in Peripheral Nerve after Crush and Permanent Transection Injuries. *J. Biol. Chem* 273: 9070-9077.

96. Tanzarella P, Ferretta A, Barile SN, Ancona M, De Rasio D, et al. (2019) Increased Levels of cAMP by the Calcium-Dependent Activation of Soluble Adenylyl Cyclase in Parkin-Mutant Fibroblasts. *Cells* 8: 250.

97. Signorile A, Ferretta A, Pacelli C, Capitanio N, Tanzarella P, et al. (2021) Resveratrol Treatment in Human Parkin-Mutant Fibroblasts Modulates cAMP and Calcium Homeostasis Regulating the Expression of Mitochondria-Associated Membranes Resident Proteins. *Biomolecules* 11: 1511.

98. Matteucci A, Patron M, Vecellio Reane D, Gastaldello S, Amoroso S, et al. (2018) Parkin-Dependent Regulation of the MCU Complex Component MICU1. *Sci. Rep* 8: 14199.

99. Kulvinder Kochar Kaur, Allahbadia GN, Singh M (2023) Update on Etiopathogenesis of Type 1 Diabetes (T1D): Emphasis on part of Crosstalk of Gut Microbiome, Pancreatic Cells & Bystander Activation of Memory CD8+T cells with Mitochondrial Melatonergic Pathway: Treatment Repercussions-A Narrative Review" Universal Library of Medical and Health Sciences 1: 41-64.

100. Pereira SL, Grossmann D, Delcambre S, Hermann A, Grünwald A (2023) Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and Neuroinflammation in Parkinson's Disease. *Curr. Opin. Neurobiol* 80: 102720.

101. Ismael S, Colvin RA, Lee D (2024) Activation of Cyclic AMP Signaling Pathway in Dopaminergic Neurons Rescues Locomotion Defects in a *Drosophila* Larval Model of Parkinson's Disease. *Brain Res* 1822: 148641.

102. Morales-Garcia JA, Redondo M, Alonso-Gil S, Gil C, Perez C, et al. (2011) Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease. *PLoS ONE* 6: e17240.

103. Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E (2023) Phosphodiesterase-4 Inhibition in Parkinson's Disease: Molecular Insights and Therapeutic Potential. *Cell Mol. Neurobiol* 43: 2713-2741.

104. Doyle TB, Muntean BS, Ejendal KF, Hayes MP, Soto-Velasquez M, et al. (2019) Identification of Novel Adenylyl Cyclase 5 (AC5) Signaling Networks in D1 and D2 Medium Spiny Neurons Using Bimolecular Fluorescence Complementation Screening. *Cells* 8: 1468.

105. Iwamoto T, Okumura S, Iwatsubo K, Kawabe JI, Ohtsu K, et al. (2003) Motor Dysfunction in Type 5 Adenylyl Cyclase-Null Mice. *J Biol Chem* 278: 16936-16940.

106. Park HY, Kang YM, Kang Y, Park TS, Ryu YK, et al. (2014) Inhibition of Adenylyl Cyclase Type 5 Prevents L-DOPA-Induced Dyskinesia in an Animal Model of Parkinson's Disease. *J Neurosci* 34: 11744-11753.

107. Navarro G, Cerdomí A, Casadó-Anguera V, Moreno E, Cai NS, et al. (2018) Evidence for Functional Pre-Coupled Complexes of Receptor Heteromers and Adenylyl Cyclase. *Nat Commun* 9: 1242.

108. Ferré S, Bonaventura J, Zhu W, Hatcher-Solis C, Taura J, et al. (2018) Essential Control of the Function of the Striatopallidal Neuron by Pre-Coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase. *Front Pharmacol* 9: 243.

109. Taura J, Valle-León M, Sahlholm K, Watanabe M, Van Craenenbroeck K, et al. (2018) Behavioral Control by Striatal Adenosine A 2A -dopamine D 2 Receptor Heteromers. *Genes. Brain Behav* 17: e12432.

110. Yarwood SJ (2020) Special Issue on "New Advances in Cyclic AMP Signalling"—An Editorial Overview. *Cells* 9: 2274.

111. Cowburn RF, O'Neill C, Bonkale WL, Ohm TG, Fastbom J (2001) Receptor-G-Protein Signalling in Alzheimer's Disease. *Biochem Soc Symp* 67: 163-175.

112. Schnecko A, Witte K, Bohl J, Ohm T, Lemmer B (1994) Adenylyl Cyclase Activity in Alzheimer's Disease Brain: Stimulatory and Inhibitory Signal Transduction Pathways Are Differently Affected. *Brain Res* 644: 291-296.

113. Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M (2023) The Old Second Messenger CAMP Teams up with Novel Cell Death Mechanisms: Potential Translational Therapeutical Benefit for Alzheimer's Disease and Parkinson's Disease. *Front Physiol* 14: 1207280.

114. Yamamoto M, Ozawa H, Saito T, Frölich L, Riederer P, et al. (1996) Reduced Immunoreactivity of Adenylyl Cyclase in Dementia of the Alzheimer Type. *Neuroreport* 7: 2965-2970.

115. Sharma VK, Singh TG (2021) CREB: A Multifaceted Target for Alzheimer's Disease. *Curr Alzheimer Res* 17/: 1280-1293.

116. Liang Z, Liu F, Grundke-Iqbali I, Iqbal K, Gong C (2007) Down-regulation of CAMP-dependent Protein Kinase by Over-activated Calpain in Alzheimer Disease Brain. *J Neurochem* 103: 2462-2470.

117. Zyuz'kov GN, Miroshnichenko LA, Polykova TY, Simanina EV, Chayikovskyi AV (2025) Targeting Adenylyl Cyclase: A Novel Concept for Stimulation of Neurogenesis and Pharmacotherapy of Alzheimer's Disease. *Cent. Nerv Syst Agents Med Chem* 25: 169-180.

118. Jean Gregoire M, Sirtori R, Donatelli L, Morgan Potts E, Collins A, et al. (2024) Early Disruption of the CREB Pathway Drives Dendritic Morphological Alterations in FTD/ALS Cortical Neurons. *Proc Natl Acad Sci USA* 121.

119. Ho DM, Shaban M, Mahmood F, Ganguly P, Todeschini L, et al. (2024) CAMP/PKA Signaling Regulates TDP-43 Aggregation and Mislocalization. *Proc Natl Acad Sci USA* 121: 121.

120. Ma X, Peterson R, Turnbull J (2011) Adenylyl Cyclase Type 3, a Marker of Primary Cilia, Is Reduced in Primary Cell Culture and in Lumbar Spinal Cord *in Situ* in G93A SOD1 Mice. *BMC Neurosci* 12: 71.

121. Alam MM, Minj E, Yadav RK, Mehan S (2021) Neuroprotective Potential of Adenyl Cyclase/CAMP/CREB and Mitochondrial CoQ10 Activator in Amyotrophic Lateral Sclerosis Rats. *Curr Bioact Compd* 17.

122. Maugeri G, D'Amico AG, Rasà DM, Federico C, Saccone S, et al. (2019) Molecular Mechanisms Involved in the Protective Effect of Pituitary Adenylyl Cyclase-activating Polypeptide in an in Vitro Model of Amyotrophic Lateral Sclerosis. *J Cell Physiol* 234: 5203-5214.

123. Kolb SJ, Kissel JT (2015) Spinal Muscular Atrophy. *Neurol Clin* 33: 831-846.

124. Mack SG, Cook DJ, Dhurjati P, Butchbach MER (2014) Systems Biology Investigation of CAMP Modulation to Increase SMN Levels for the Treatment of Spinal Muscular Atrophy. *PLoS ONE* 9: e115473.

125. Sierra-Delgado JA, Sinha-Ray S, Kaleem A, Ganjibakhsh M, Parvate M, et al. (2023) In Vitro Modeling as a Tool for Testing Therapeutics for Spinal Muscular Atrophy and IGHMBP2-Related Disorders. *Biology* 12: 867.

126. Polanco MJ, Parodi S, Piol D, Stack C, Chivet M, et al. (2016) Adenylyl Cyclase Activating Polypeptide Reduces Phosphorylation and Toxicity of the Polyglutamine-Expanded Androgen Receptor in Spinobulbar Muscular Atrophy. *Sci Transl Med* 8: 370ra181.

127. Polanco MJ, Parodi S, Piol D, Stack C, Chivet M, et al. (2016) Adenylyl Cyclase Activating Polypeptide Reduces Phosphorylation and Toxicity of the Polyglutamine-Expanded Androgen Receptor in Spinobulbar Muscular Atrophy. *Sci Transl Med* 8: 370ra181.

128. Costa LM, Pereira JE, Filipe VM, Magalhães LG, Couto PA, et al. (2013) Rolipram Promotes Functional Recovery after Contusive Thoracic Spinal Cord Injury in Rats. *Behav Brain Res* 243: 66-73.

129. Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT (2004) The Phosphodiesterase Inhibitor Rolipram Delivered after a Spinal Cord Lesion Promotes Axonal Regeneration and Functional Recovery. *Proc Natl Acad Sci USA* 101: 8786-8790.

130. Rydel RE, Greene LA (1988) CAMP Analogs Promote Survival and Neurite Outgrowth in Cultures of Rat Sympathetic and Sensory Neurons Independently of Nerve Growth Factor. *Proc Natl Acad Sci USA* 85: 1257-1261.

131. Cui Q, So KF (2004) Involvement of CAMP in Neuronal Survival and Axonal Regeneration. *Anat Sci Int* 79: 209-212.

132. Kapoor T, Mehan S, Suri M, Sharma N, Kumar N, et al. (2022) Forskolin, Adenylcyclase/CAMP/CREB Signaling Activator Restoring Myelin-Associated Oligodendrocyte Destruction in Experimental Ethidium Bromide Model of Multiple Sclerosis. *Cells* 11: 2771.

133. Klein HW, Kilmer S, Carlsen RC (1989) Enhancement of Peripheral Nerve Regeneration by Pharmacological Activation of the Cyclic Amp Second Messenger System. *Microsurgery* 10: 122-125.

134. Oliveira JT, Yanick C, Wein N, Gomez Limia CE (2023) Neuron-Schwann Cell Interactions in Peripheral Nervous System Homeostasis, Disease, and Preclinical Treatment. *Front Cell Neurosci* 17: 1248922.

135. Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, et al. (2021) Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. *Front Mol Neurosci* 13.

136. Vazquez-Mayorga E, Grigoruta M, Dagda R, Martinez B, Dagda RK (2022) Intraperitoneal Administration of Forskolin Reverses Motor Symptoms and Loss of Midbrain Dopamine Neurons in PINK1 Knockout Rats. *J Parkinsons Dis* 12: 831-850.

137. Alharbi M, Alshammari A, Kaur G, Kalra S, Mehan S, et al. (2022) Effect of Natural Adenylcyclase/CAMP/CREB Signalling Activator Forskolin against Intra-Striatal 6-OHDA-Lesioned Parkinson's Rats: Preventing Mitochondrial, Motor and Histopathological Defects. *Molecules* 27: 7951.

138. Owona BA, Zug C, Schluesener HJ, Zhang ZY (2016) Protective Effects of Forskolin on Behavioral Deficits and Neuropathological Changes in a Mouse Model of Cerebral Amyloidosis. *J Neuropathol Exp Neurol* 75: 618-627.

139. Kumar A, Singh N (2017) Pharmacological Activation of Protein Kinase A Improves Memory Loss and Neuropathological Changes in a Mouse Model of Dementia of Alzheimer's Type. *Behav Pharmacol* 28: 187-198.

140. Vitolo OV, Sant'Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M (2002) Amyloid β -peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. *Proc Natl Acad Sci USA* 99: 13217-13221.

141. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, et al. (2004) Tau Becomes a More Favorable Substrate for GSK-3 When It Is Prephosphorylated by PKA in Rat Brain. *J Biol Chem* 279: 50078-50088.

142. Tian Q, Zhang JX, Zhang Y, Wu F, Tang Q, et al. (2009) Biphasic Effects of Forskolin on Tau Phosphorylation and Spatial Memory in Rats. *J Alzheimer's Dis* 17: 631-642.

143. Mehan S, Parveen S, Kalra S (2017) Adenyl Cyclase Activator Forskolin Protects against Huntington's Disease-like Neurodegenerative Disorders. *Neural Regen Res* 12: 290.

144. Wyttenbach A (2001) Polyglutamine Expansions Cause Decreased CRE-Mediated Transcription and Early Gene Expression Changes Prior to Cell Death in an Inducible Cell Model of Huntington's Disease. *Hum Mol Genet* 10: 1829-1845.

145. Yu Q, Li M, Anayyat U, Zhou C, Nie S, et al. (2024) Forskolin Improves Experimental Autoimmune Encephalomyelitis in Mice Probably by Inhibiting the Calcium and the IL-17-STEAP4 Signaling Pathway. *Helix* 10: e36063.

146. Russo R, Adornetto A, Cavaliere F, Varano GP, Rusciano D, et al. (2015) Intravitreal Injection of Forskolin, Homotaurine, and L-Carnosine Affords Neuroprotection to Retinal Ganglion Cells Following Retinal Ischemic Injury. *Mol Vis* 21: 718-729.

147. Rusciano D (2024) Health Benefits of Epigallocatechin Gallate and Forskolin with a Special Emphasis on Glaucoma and Other Retinal Diseases. *Medicina* 60: 1957.

148. Majeed M, Nagabhushanam K, Natarajan S, Vaidyanathan P, Karri SK, et al. (2015) Efficacy and Safety of 1% Forskolin Eye Drops in Open Angle Glaucoma—An Open Label Study. *Saudi J Ophthalmol* 29: 197-200.

149. Meng Q, Lei W, Chen H, Feng Z, Hu L, Zhang X, Li S (2018) Combined Rosiglitazone and Forskolin Have Neuroprotective Effects in SD Rats after Spinal Cord Injury. *PPAR Res* 2018: 1-11.

150. Sulaiman OAR, Gordon T (2002) Transforming Growth Factor- β and Forskolin Attenuate the Adverse Effects of Long-term Schwann Cell Denervation on Peripheral Nerve Regeneration in Vivo. *Glia* 37: 206-218.

151. Sulaiman W, Dreesen T, Nguyen D (2018) Single Local Application of TGF- β Promotes a Proregenerative State Throughout a Chronically Injured Nerve. *Neurosurgery* 82: 894-902.

152. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic Properties of “Soluble” Adenylyl Cyclase. *J. Biol. Chem.* 278: 15922-15926

153. 2 Bastola T, Perkins GA, Huu VAN, Ju S, Kim KY, et al. (2024) Activating Soluble Adenylyl Cyclase Protects Mitochondria, Rescues Retinal Ganglion Cells, and Ameliorates Visual Dysfunction Caused by Oxidative Stress. *bioRxiv* 2024.

154. 3. Koves K (2016) Distribution of PACAP in the Mammalian Nervous System. In Pituitary Adenylate Cyclase Activating Polypeptide—PACAP. Springer 203.

155. 4. Somogyvari-Vigh A, Reglodi D (2004) Pituitary Adenylate Cyclase Activating Polypeptide: A Potential Neuroprotective Peptide. *Curr. Pharm. Des.*, 10: 2861-2889.

156. 5. Lee EH, Seo SR (2014) Neuroprotective Roles of Pituitary Adenylate Cyclase-Activating Polypeptide in Neurodegenerative Diseases. *BMB Rep* 47: 369-375.

157. 6. Ravni A, Bourgault S, Lebon A, Chan P, Galas L (2006) The Neurotrophic Effects of PACAP in PC12 Cells: Control by Multiple Transduction Pathways. *J. Neurochem* 98: 321-329.

158. 7. Manecka DL, Boukhzar L, Falluel-Morel A, Lihrmann I, Anouar Y (2016) PACAP Signaling in Neuroprotection. In Pituitary Adenylate Cyclase Activating Polypeptide—PACAP. Berlin 549-561.

159. 8. Dickson L, Finlayson K (2009) VPAC and PAC Receptors: From Ligands to Function. *Pharmacol. Ther* 121: 294-316.

160. 9. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D et al. (2009) Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. *Pharmacol. Rev* 61: 283-357.

161. 10. Langer I, Jeandriens J, Couvineau A, Sanmukh S, Latek D (2022) Signal Transduction by VIP and PACAP Receptors. *Biomedicines* 10:406.

162. 11. Lu J, Piper SJ, Zhao P, Miller LJ, Wooten D (2022) Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. *Int. J. Mol. Sci* 23: 80-69.

163. 12. Watanabe J, Nakamachi T, Matsuno R, Hayashi D, Nakamura (2007) Localization, Characterization and Function of Pituitary Adenylate Cyclase-Activating Polypeptide during Brain Development. *Peptides* 28: 1713-1719.

164. 13. Waschek JA (2002) Multiple Actions of Pituitary Adenylyl Cyclase Activating Peptide in Nervous System Development and Regeneration. *Dev. Neurosci* 24: 14-23.

165. 14. Zhang YZ, Hannibal J, ZhaoQ, Moller K, Danielsen (1996) Pituitary Adenylate Cyclase Activating Peptide Expression in the Rat Dorsal Root Ganglia: Up-Regulation after Peripheral Nerve Injury. *Neuroscience* 74: 1099-1110.

166. 15. Chen Q, Zhang XY, Wang YP, Fu YJ, Cao F (2023) Unveiling Adcyap1 as a Protective Factor Linking Pain and Nerve Regeneration through Single-Cell RNA Sequencing of Rat Dorsal Root Ganglion Neurons. *BMC Biol* 21: 235.

167. 16. Woodley PK, Min Q, Li Y, Mulvey NF, ParkinsonDB (2019) Distinct VIP and PACAP Functions in the Distal Nerve Stump During Peripheral Nerve Regeneration. *Front. Neurosci* 13: 1326.

168. 17. Maugeri G, D'Amico AG, Musumeci G, Reglodi D, D'Agata V (2020) Effects of PACAP on Schwann Cells: Focus on Nerve Injury. *Int. J. Mol. Sci* 21: 8233.

169. Armstrong BD, Abad C, Chhith S, Cheung-Lau G, Hajji OE (2008) Impaired Nerve Regeneration and Enhanced Neuroinflammatory Response in Mice Lacking Pituitary Adenylyl Cyclase Activating Peptide. *Neuroscience* 151: 63-73.

170. Liao C, de Molliens MP, Schneebeli ST, Brewer M, Song G (2019) Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. *Curr. Top. Med. Chem* 19: 1399-1417.

171. Kaneko Y, Tuazon JP, Ji X, Borlongan CV (2018) Pituitary Adenylate Cyclase Activating Polypeptide Elicits Neuroprotection Against Acute Ischemic Neuronal Cell Death Associated with NMDA Receptors. *Cell. Physiol. Biochem* 51: 1982-1995.

172. Maasz G, Zrinyi Z, Reglodi D, Petrovics D, Rivnyak A (2017) Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Has Neuroprotective Function in Dopamine-Based Neuronegeneration Developed in Two Parkinsonian Models. *Dis. Model. Mech* 10: 127-139.

173. 22 Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the Protective Effects of PACAP in Models of Neurodegenerative Diseases In Vitro and In Vivo. *Curr. Pharm. Des* 17: 962-972.

174. Lamine-Ajili A, Fahmy AM, Létourneau M, Chatenet D, Labonté P (2016) Effect of the Pituitary Adenylate Cyclase-Activating Polypeptide on the Autophagic Activation Observed in in Vitro and in Vivo Models of Parkinson's Disease. *Biochim. Biophys. Acta (BBA)-Mol. Basis Dis* 1862: 688-695.

175. Solés-Tarrés I, Cabezas-Llobet N, Vaudry D, Xifró X (2020) Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide Against Cognitive Decline in Neurodegenerative Diseases. *Front. Cell Neurosci.*, 14: 221.

176. Cherait A, Banks WA, Vaudry D (2023) The Potential of the Nose-to-Brain Delivery of PACAP for the Treatment of Neuronal Disease. *Pharmaceutics* 15: 2032.

177. Rácz B, Gallya F, Kiss P, Tóth G, Hegyi O et al. (2006) The Neuroprotective Effects of PACAP in Monosodium Glutamate-Induced Retinal Lesion Involve Inhibition of Proapoptotic Signaling Pathways. *Regul. Pept* 137: 20-26.

178. Bourgault S, Chatenet D, Wurtz O, Doan ND, Leprince J (2011) strategies to Convert PACAP from a Hypophysiotropic Neurohormone Into a Neuroprotective Drug. *Curr. Pharm. Des* 17: 1002-1024.

179. Doan ND, Bourgault S, Dejda A, Létourneau M, Dethieux M (2011) Design and in Vitro Characterization of PAC1/VPAC1-Selective Agonists with Potent Neuroprotective Effects. *Biochem. Pharmacol* 81: 552-561.

180. Yang R, Jiang X, Ji R, Meng L, Liu F (2015) Therapeutic Potential of PACAP for Neurodegenerative Diseases. *Cell Mol. Biol. Lett* 20: 265-278.

181. Mercer A, Rönnholm H, Holmberg J, Lundh, H. Heidrich J (2004) PACAP Promotes Neural Stem Cell Proliferation in Adult Mouse Brain. *J. Neurosci. Res* 76: 205-215.

182. Tamas A, Reglodi D, Farkas O, Kovesdi E (2012) Effect of PACAP in Central and Peripheral Nerve Injuries. *Int. J. Mol. Sci* 13: 8430-8448.

183. Ciranna L, Costa L (2019) Pituitary Adenylate Cyclase-Activating Polypeptide Modulates Hippocampal Synaptic Transmission and Plasticity: New Therapeutic Suggestions for Fragile X Syndrome. *Front. Cell Neurosci* 13: 524.

184. Gilmartin MR, Ferrara NC (2021) Pituitary Adenylate Cyclase-Activating Polypeptide in Learning and Memory. *Front. Cell Neurosci* 15.

185. Rajbhandari AK, Barson JR, Gilmartin MR, Hammack SE. Chen BK (2023) The Functional Heterogeneity of PACAP: Stress, Learning, and Pathology. *Neurobiol. Learn. Mem* 203: 107-792.

186. Farkas O, Tamás A, Zsombok A, Reglodi D, Pál J (2004) Effects of Pituitary Adenylate Cyclase Activating Polypeptide in a Rat Model of Traumatic Brain Injury. *Regul. Pept* 123: 69-75.

187. Toth D, Tamas A, Reglodi D (2020) The Neuroprotective and Biomarker Potential of PACAP in Human Traumatic Brain Injury. *Int. J.Mol. Sci* 21.

188. Brifault C, Vaudry D, Wurtz O (2016) The Neuropeptide PACAP, a Potent Disease Modifier Candidate for Brain Stroke Treatment. In Pituitary Adenylate Cyclase Activating Polypeptide—PACAP; Springer Nature: Berlin 583-606.

189. Shioda S, Nakamachi T (2015) PACAP as a Neuroprotective Factor in Ischemic Neuronal Injuries. *Peptides* 72: 202-207.

190. Pavan B, Biondi C, Dalpiaz A (2009) Adenylyl Cyclases as Innovative Therapeutic Goals. *Drug Discov. Today* 14: 982-991.

191. Zyuz'kov GN, Arkadevna L, Polykova TY, Simanina EV, Stavrova LA (2021) Targeting CAMP-Pathway in RegenerationCompetent Cells of Nervous Tissue: Potential to Create a Novel Drug for Treatment of Ethanol-Induced Neurodegeneration. *Cent. Nerv. Syst. Agents Med. Chem* 21: 172-180.

192. Wang H, Gong B, Vadakkan KI, Toyoda H, Kaang B K, Zhuo M (2007) Genetic Evidence for Adenylyl Cyclase 1 as a Target for Preventing Neuronal Excitotoxicity Mediated by N-Methyl-D-Aspartate Receptors. *J. Biol. Chem* 282: 15071517.

193. Binvignat O, Olloquequi J (2020) Excitotoxicity as a Target Against Neurodegenerative Processes. *Curr. Pharm. Des* 26: 1251-1262.

194. Watts VJ (2007) Adenylyl Cyclase Isoforms as Novel Therapeutic Targets: An Exciting Example of Excitotoxicity Neuroprotection. *Mol. Interv* 7: 70-73.

195. Armada Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J (2020) Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. *Front. Cell Neurosci* 14: 90.

196. Zhou Z, Shi W, Fan K, Xue M (2021) Inhibition of Calcium-Stimulated Adenylyl Cyclase Subtype 1 (AC1) for the Treatment of Neuropathic and Inflammatory Pain in Adult Female Mice. *Mol. Pain* 17.

197. Sharif-Naeini R, Basbaum AI (2011) Targeting Pain Where It Resides . . . In the Brain. *Sci. Transl. Med* 3.

198. Hayes MP, Wiernicki TR, Martinez-Grau MA, Burris KD, Watts VJ (2020) Focused Library Screening for Isoform Selective Adenylyl Cyclase 1 Inhibitors as Non-Opioid Alternatives for Chronic and Inflammatory Pain. *FASEB J* 34 1.

199. Dwyer T, Fulton C, Annadka S, Smith B, Watts V Flaherty D (2024) Targeting Adenylyl Cyclase 1 for Development of Non-Opioid Pain Therapeutics. *J. Pharmacol. Exp. The* 389.

200. Giacoletti G, Price T, Hoelz LVB, Shremo Msdi A, Cossin S (2024) A Selective Adenylyl Cyclase 1 Inhibitor Relieves Pain Without Causing Tolerance. *Front. Pharmacol*

201. Wang H, Zhang M (2012) The Role of Ca²⁺-Stimulated Adenylyl Cyclases in Bidirectional Synaptic Plasticity and Brain Function. *Rev. Neurosci* 23: 67-78.

202. Masada N, Ciruela A, MacDougall DA, Cooper DMF (2009) Distinct Mechanisms of Regulation by Ca²⁺/Calmodulin of Type 1 and 8 Adenylyl Cyclases Support Their Different Physiological Roles. *J Biol Chem* 284: 4451-4463.

203. Lee KW, Hong JH, Choi IY, Che Y, Lee JK, et al. (2002) Impaired D2 Dopamine Receptor Function in Mice Lacking Type 5 Adenylyl Cyclase. *J. Neurosci* 22: 7931-7940.

204. Doyle TB, Hayes MP, Chen DH, Raskind WH, Watts VJ (2019) Functional Characterization of AC5 Gain-of-Function Variants: Impact on the Molecular Basis of ADCY5-Related Dyskinesia. *Biochem. Pharmacol* 163: 169-177.

205. Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, et al. (2017) International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. *Pharmacol. Rev* 69: 93-139.

206. Sun X, Liu Y, Liu B, Xiao Z, Zhang L (2012) Rolipram Promotes Remyelination Possibly via MEK-ERK Signal Pathway in Cuprizone-Induced Demyelination Mouse. *Exp. Neurol* 237: 304-311.

207. Brust TF, Alongkronrusmee D, Soto Velasquez M, Baldwin TA, Ye Z, et al. (2017) Identification of a Selective Small-Molecule Inhibitor of Type 1 Adenylyl Cyclase Activity with Analgesic Properties. *Sci. Signal* 10: 5381.

208. Gorain B, Rajeswary DC, Pandey M, Kesharwani P, Kumbhar SA, et al. (2020) Nose to Brain Delivery of Nanocarriers Towards Attenuation of Demented Condition. *Curr. Pharm. Des* 26: 2233-2246.

209. Dhas NL, Kudarha RR, Mehta TA (2019) Intranasal Delivery of Nanotherapeutics/Nanobiotherapeutics for the Treatment of Alzheimer's Disease: A Proficient Approach. *Crit. Rev. Ther. Drug Carrier Syst* 36: 373-447.

210. El Ouamari Y, Van den Bos J, Willekens B, Cools N, Wens I (2023) Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. *Int. J. Mol. Sci* 24: 3866.

211. Hansen LMB, Dam VS, Guldbrandsen HØ, Staehr C, Pedersen TM, et al. (2025) Spatial Transcriptomics and Proteomics Profiling After Ischemic Stroke Reperfusion: Insights into Vascular Alterations. *Stroke* 56: 1036-1047.

212. Scott EY, Safarian N, Casasbuenas DL, Dryden M, Tockovska T, et al. (2024) Integrating Single-Cell and Spatially Resolved Transcriptomic Strategies to Survey the Astrocyte Response to Stroke in Male Mice. *Nat. Commun* 15: 1584.

213. Koupourtidou C, Schwarz V, Aliee H, Freerich S, Fischer-Sternjak J, et al. (2024) Shared Inflammatory Glial Cell Signature after Stab Wound Injury, Revealed by Spatial, Temporal, and Cell-Type-Specific Profiling of the Murine Cerebral Cortex. *Nat. Commun* 15: 2866.

214. Sobolczyk M, Boczek T (2022) Astrocytic Calcium and cAMP in Neurodegenerative Diseases. *Front. Cell Neurosci* 16.

215. Zhou Z, Ikegaya Y, Koyama R (2019) The Astrocytic cAMP Pathway in Health and Disease. *Int. J. Mol. Sci* 20: 779.

216. Ghosh M, Xu Y, Pearse DD (2016) Cyclic AMP Is a Key Regulator of M1 to M2a Phenotypic Conversion of Microglia in the Presence of Th2 Cytokines. *J. Neuroinflamm* 13: 9.

217. Rahman MM, Islam MR, Yamin M, Islam MM, Sarker MT, et al. (2022) Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. *Oxid. Med. Cell Longev* 2022: 1-27.

Copyright: ©2025 Kulvinder Kochhar Kaur. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.